ZStack实践汇 | ZStack+Docker支撑GPU业务实践

背景

ZStack所聚焦的IaaS,作为云计算里的底座基石,能够更好的实现物理资源隔离,以及服务器等硬件资源的统一管理,为上层大数据、深度学习Tensorflow等业务提供了稳定可靠的基础环境。

近年来,云计算发展探索出了有别于传统虚拟化、更贴近于业务的PaaS型服务,该类型依赖于docker实现,如K8S等典型的容器云,可以直接从镜像商店下载封装好业务软件的镜像,更加快捷地实现业务部署。

此外,GPU场景也是客户业务的典型场景,相比于CPU的运算特点,在数据分析、深度学习有着明显的优势。

ZStack是如何与容器结合,以IaaS+PaaS的组合拳,为上层业务提供支撑的呢?本篇文章带大家了解一下,如何在ZStack 上部署 centos7.6 虚拟机,在虚拟机里部署docker,以及如何使用nvidia-docker实现在容器里调用GPU的业务场景。

环境

虚机系统:Centos 7.6

虚机内核:Linux 172-18-47-133 3.10.0-957.el7.x86_64 #1 SMP Thu Nov 8 23:39:32 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

docker版本:docker-ce 19.03

nvidia-docker版本:nvidia-docker-1.0.11.x86_64

显卡:RTX6000

Cuda版本:10.1

显卡驱动:418

如下图所示:

在这里插入图片描述

Part 01
显卡驱动安装

1、下载对应版本的CUDA,并以此安装驱动。CUDA已经紧密结合了NVIDIA,以下驱动在centos、ubuntu上面均可执行,并自带绝大部分NVIDIA型号的显卡驱动,实用性非常强。

wget http://plan.zstack.io/storage/iso/nvidia/cuda_10.1.168_418.67_linux.run

chmod+x http://plan.zstack.io/storage/iso/nvidia/cuda_10.1.168_418.67_linux.run

GPU透传给虚拟机的操作步骤,详见在zstack.io官网可搜索到的《GPU实践手册》。

特别提醒:平台CPU模式一定要设置成passthrough!否则后续无法正常调用GPU做任何操作。

2、安装驱动,会自动禁止使用默认显卡驱动。特殊情况如需手动禁用,可使用如下操作:
在这里插入图片描述

echo “blacklist nouveau” >>/usr/lib/modprobe.d/dist-blacklist.conf

echo “options nouveau modeset=0” >>/usr/lib/modprobe.d/dist-blacklist.conf

mv /boot/initramfs- ( u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值