UVALive 4255 Guess(前缀和+拓扑排序)

题目:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2256

题目大意:有一个序列,a1~an,然后给你一个N*N的矩阵,mij 表示 ai 加到 aj 的符号,+ 表示 > 0,- 表示小于 0,0 表示 = 0。然后我们就是它给你一个矩阵,让你求出一个可能的序列。

解题思路:很好的一道题啊!如果单纯考虑,那么就会很麻烦。看了书,才恍然大悟,一句话:连续和转化为前缀和之差。怪自己没有这个习惯吧。设bi 为前 i 个的和,然后矩阵中的一个值就是一个 b[  j ] 和 b[ i - 1 ] 的大小关系,连一条有向边,我是从大连到小,然后记录入度。连好后,就是拓扑排序了。最后我们求 a 是根据 b 前后相减,我们假设最大值是 0,一开始入度为 0 的点(可能有若干个)的值是 0。然后用队列广搜,减掉入度,如果入度为 0 了,就加入队列。比当前值小的点(即有边)肯定比当前值至少小 1,我们就规定让它 -1 。其实我当时还在纠结一个问题,那就是相等的情况,即矩阵中为 0 的时候,要怎么处理。后来发现,其实根本就不用处理,因为矩阵是 N*(N-1)/2 个数字,就是说每个点都和其他所有点有关系,拓扑排序的时候也同样搜到的。先开始处理的时候加个 a0 和 b0(其实他们的真实值为 0) ,因为前面是 b[ i - 1 ] ,方便处理。

代码如下:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

int a[11],b[11],Map[11][11];
int in[11];

queue <int> q;

void topoo(int n)
{
    for(int i = 0;i <= n;i++)
        if(in[i] == 0)
        {
            q.push(i);
        }
    while(!q.empty())
    {
        int x = q.front();
        q.pop();
        for(int i = 0;i <= n;i++)
            if(Map[x][i] == 1)
            {
                b[i] = b[x]-1;
                in[i]--;
                if(in[i] == 0)
                    q.push(i);
            }
    }
}

char str[11*11];

int main()
{
    int _;
    scanf("%d",&_);
    while(_--)
    {
        int n;
        scanf("%d",&n);
        scanf("%s",str);
        memset(Map,0,sizeof(Map));
        int cc = 0;
        for(int i = 1;i <= n;i++)
        {
            for(int j = i;j <= n;j++,cc++)
                if(str[cc] == '+')
                {
                    in[i-1]++;
                    Map[j][i-1] = 1;
                }
                else if(str[cc] == '-')
                {
                    in[j]++;
                    Map[i-1][j] = 1;
                }
        }
        memset(b,0,sizeof(b));
        topoo(n);
        //for(int i = 0;i <= n;i++)
            //printf("b[%d] = %d\n",i,b[i]);
        printf("%d",b[1]-b[0]);
        for(int i = 2;i <= n;i++)
            printf(" %d",b[i]-b[i-1]);
        puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值