题目背景
学校艺术节上,规定合唱队要参加比赛,各个队员的衣服颜色不能很混乱:合唱队员应排成一横排,且衣服颜色必须是左右对称的。
例如:“红蓝绿蓝红”或“红蓝绿绿蓝红”都是符合的,而“红蓝绿红”或“蓝绿蓝红”就不符合要求。
合唱队人数自然很多,仅现有的同学就可能会有3000个。老师希望将合唱队调整得符合要求,但想要调整尽量少,减少麻烦。以下任一动作认为是一次调整:
题目描述
1、在队伍左或右边加一个人(衣服颜色依要求而定);
2、在队伍中任两个人中间插入一个人(衣服颜色依要求而定);
3、剔掉一个人;
4、让一个人换衣服颜色;
老师想知道就目前的队形最少的调整次数是多少,请你编一个程序来回答他。
因为加入合唱队很热门,你可以认为人数是无限的,即随时想加一个人都能找到人。同时衣服颜色也是任意的。
输入格式
第一行是一个整数n(1<=n<=3000)。
第二行是n个整数,从左到右分别表示现有的每个队员衣服的颜色号,都是1到3000的整数。
输出格式
一个数,即对于输入队列,要调整得符合要求,最少的调整次数。
输入输出样例
输入 #1复制
5 1 2 2 4 3
输出 #1复制
2
修改的条件很多但是是有包含关系的
第i个和第j个颜色不同的时候
可以在dp[i+1][j]的基础上改头的颜色
可以在dp[i][j-1]的基础上改尾的颜色
可以在dp[i+1][j-1]的基础上改头/尾的颜色 (当时自己没想出这个)其实头和尾巴颜色不同,可以在dp[i+1][j-1]基础上把头改成尾巴颜色或者把尾巴改成头颜色
第i个颜色和第j个颜色同的时候,直接对称相等 dp[i][j]=dp[i+1][j-1]
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=3e3+10;
typedef long long LL;
LL a[maxn];
LL f[maxn][maxn];
int main(void)
{
cin.tie(0);std::ios::sync_with_stdio(false);
LL n;cin>>n;
for(LL i=1;i<=n;i++) cin>>a[i];
for(LL i=1;i<=n;i++)
{
f[i][i]=0;
if(i!=1)
{
if(a[i]==a[i-1]) f[i-1][i]=0;
else
{
f[i-1][i]=1;
}
}
}
for(LL len=2;len<=n;len++)
for(LL i=1;i+len-1<=n;i++)
{
LL j=i+len-1;
if(a[i]==a[j])
f[i][j]=f[i+1][j-1];
else if(a[i]!=a[j])
{
f[i][j]=min(f[i+1][j],min(f[i][j-1],f[i+1][j-1]))+1;
}
}
cout<<f[1][n]<<endl;
return 0;
}