倍数法求正约数集合

题意:求1-N每个数的正约数集合,如果用O(sqrt(n))的试除法去做,总复杂度O(Nsqrt(N))复杂度太高,当N=1e6的时候就卡了

思路:反过来考虑,对于每个数d,1-N中以d为约数的数就是d的倍数d,2d,3d,4d…[N/d]*d;

时间复杂度O(NlogN):怎么算?

N+N/2+N/3+N/4+N/5+N/6+….N/N=N(1+1/2+1/3+1/4+1/5+…..1/N)=O(NlogN)

后面是个调和级数,关于调和级数的和大致的答案我之前有写

http://www.yyycode.cn/index.php/2020/05/24/%e8%b0%83%e5%92%8c%e7%ba%a7%e6%95%b0%e8%bf%91%e4%bc%bc%e6%b1%82%e5%92%8c%e5%85%ac%e5%bc%8f%e6%8e%a8%e5%af%bc%e8%bd%ac%e8%bd%bd/

 

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e5;
typedef long long LL;
vector<int> factor[maxn];
int main(void)
{
  cin.tie(0);std::ios::sync_with_stdio(false);
  for(LL i=1;i<=n;i++)
  	for(LL j=1;j<=n/i;j++)
  		factor[i*j].push_back(i);
  for(LL i=1;i<=n;i++){
  	for(LL j=0;j<factor[i].size();i++)
  		cout<<factor[i][j]<<' ';
  	 cout<<endl;	
	}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值