B. Sum of Medians(思维+数学)

https://codeforces.com/contest/1440/problem/B


题意:划分序列,求每个块中的中位数之和,构造使得最大。

思路:n=2的时候,n/2=1,贪心从前往后取2个,不浪费后面的大数。

n>2的时候,比如n=3.前取1个,后取2个,贪心最大。

n=4的时候,n/2=2;所以要前面1个,后面3个。中位数在大的一边。

n/5=的时候n/2=3,前面2个,后面3个。中位数在大的一边。

然后O(n)后往前扫

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=1e6+100;
typedef long long LL;
LL a[maxn];
int main(void)
{
  cin.tie(0);std::ios::sync_with_stdio(false);
  LL t;cin>>t;
  while(t--){
     LL n,k;cin>>n>>k;
     LL sum=0;LL ans=0;
     for(LL i=1;i<=n*k;i++) cin>>a[i];
     if(n==2){
       for(LL i=1;i<=n*k;i+=n){
        if(ans>=k){
            break;
            }
        sum+=a[i];ans++;
        }
        cout<<sum<<endl;
     }
     else{
        LL st=0;
        if(n%2==0) st=n/2+1;
        else st=ceil(1.0*n/2.0);
        for(LL i=n*k-(st-1);i>=1;i-=st){
            if(ans>=k){
                break;
            }
         ///   cout<<a[i]<<" ";
            sum+=a[i];ans++;
        }
        cout<<sum<<endl;
     }
  }
return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Inequalities: Theory of Majorization and Its Applications I Theory of Majorization 1 Introduction 3 A Motivation and Basic Definitions . . . . . . . . . . 3 B Majorization as a Partial Ordering . . . . . . . . . 18 C Order-Preserving Functions . . . . . . . . . . . . . 19 D Various Generalizations of Majorization . . . . . . . 21 2 Doubly Stochastic Matrices 29 A Doubly Stochastic Matrices and Permutation Matrices . . . . . . . . . . . . . . . . . . . . . . . . 29 B Characterization of Majorization Using Doubly StochasticMatrices . . . . . . . . . . . . . . . . . . 32 C Doubly Substochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 36 D Doubly Superstochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 42 E Orderings on D . . . . . . . . . . . . . . . . . . . . 45 F Proofs of Birkhoff’s Theorem and Refinements . . . 47 G Classes of Doubly Stochastic Matrices . . . . . . . . 52 xvii xviii Contents H More Examples of Doubly Stochastic and Doubly Substochastic Matrices . . . . . . . . . . . . . . . . 61 I Properties of Doubly Stochastic Matrices . . . . . . 67 J Diagonal Equivalence of Nonnegative Matrices . . . 76 3 Schur-Convex Functions 79 A Characterization of Schur-Convex Functions . . . . 80 B Compositions Involving Schur-Convex Functions . . 88 C Some General Classes of Schur-Convex Functions . 91 D Examples I. Sums of Convex Functions . . . . . . . 101 E Examples II. Products of Logarithmically Concave (Convex) Functions . . . . . . . . . . . . . 105 F Examples III. Elementary Symmetric Functions . . 114 G Muirhead’s Theorem . . . . . . . . . . . . . . . . . 120 H Schur-Convex Functions on D and Their Extension to Rn . . . . . . . . . . . . . . . . . . . 132 I Miscellaneous Specific Examples . . . . . . . . . . . 138 J Integral Transformations Preserving Schur-Convexity . . . . . . . . . . . . . . . . . . . . 145 K Physical Interpretations of Inequalities . . . . . . . 153 4 Equivalent Conditions for Majorization 155 A Characterization by Linear Transformations . . . . 155 B Characterization in Terms of Order-Preserving Functions . . . . . . . . . . . . . . . . . . . . . . . . 156 C A Geometric Characterization . . . . . . . . . . . . 162 D A Characterization Involving Top Wage Earners . . 163 5 Preservation and Generation of Majorization 165 A Operations Preserving Majorization . . . . . . . . . 165 B Generation of Majorization . . . . . . . . . . . . . . 185 C Maximal and Minimal Vectors Under Constraints . 192 D Majorization in Integers . . . . . . . . . . . . . . . 194 E Partitions . . . . . . . . . . . . . . . . . . . . . . . 199 F Linear Transformations That Preserve Majorization 202 6 Rearrangements and Majorization 203 A Majorizations from Additions of Vectors . . . . . . 204 B Majorizations from Functions of Vectors . . . . . . 210 C Weak Majorizations from Rearrangements . . . . . 213 D L-Superadditive Functions—Properties and Examples . . . . . . . . . . . . . . . . . . . . . 217 Contents xix E Inequalities Without Majorization . . . . . . . . . . 225 F A Relative Arrangement Partial Order . . . . . . . 228 II Mathematical Applications 7 Combinatorial Analysis 243 A Some Preliminaries on Graphs, Incidence Matrices, and Networks . . . . . . . . . . . . . . . . 243 B Conjugate Sequences . . . . . . . . . . . . . . . . . 245 C The Theorem of Gale and Ryser . . . . . . . . . . . 249 D Some Applications of the Gale–Ryser Theorem . . . 254 E s-Graphs and a Generalization of the Gale–Ryser Theorem . . . . . . . . . . . . . . . . . 258 F Tournaments . . . . . . . . . . . . . . . . . . . . . . 260 G Edge Coloring in Graphs . . . . . . . . . . . . . . . 265 H Some Graph Theory Settings in Which Majorization Plays a Role . . . . . . . . . . . . . . 267 8 Geometric Inequalities 269 A Inequalities for the Angles of a Triangle . . . . . . . 271 B Inequalities for the Sides of a Triangle . . . . . . . 276 C Inequalities for the Exradii and Altitudes . . . . . . 282 D Inequalities for the Sides, Exradii, and Medians . . 284 E Isoperimetric-Type Inequalities for Plane Figures . 287 F Duality Between Triangle Inequalities and Inequalities Involving Positive Numbers . . . . . . . 294 G Inequalities for Polygons and Simplexes . . . . . . . 295 9 MatrixTheory 297 A Notation and Preliminaries . . . . . . . . . . . . . . 298 B Diagonal Elements and Eigenvalues of a Hermitian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 C Eigenvalues of a Hermitian Matrix and Its Principal Submatrices . . . . . . . . . . . . . . . . . 308 D Diagonal Elements and Singular Values . . . . . . . 313 E Absolute Value of Eigenvalues and Singular Values 317 F Eigenvalues and Singular Values . . . . . . . . . . . 324 G Eigenvalues and Singular Values of A, B, and A + B . . . . . . . . . . . . . . . . . . . . . . . 329 H Eigenvalues and Singular Values of A, B, and AB . 338 I Absolute Values of Eigenvalues and Row Sums . . . 347

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值