点一成零(并查集维护联通块+组合数学)

这篇博客讨论了一个关于n*n矩阵的问题,其中每个单元格包含0或1。矩阵中的1形成连通块,操作是点击含有1的单元格将其所在连通块全部变为0。博主通过并查集算法求解初始方案数,并处理了增加1后的连通块变化,计算新的方案数。博客中提到了错误的dfs缩点方法导致的bug,并给出了修正后的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://ac.nowcoder.com/acm/contest/9981/D


链接:https://ac.nowcoder.com/acm/contest/9981/D
来源:牛客网

牛牛拿到了一个n*n的方阵,每个格子上面有一个数字:0或1
行和列的编号都是从0到n-1
现在牛牛每次操作可以点击一个写着1的格子,将这个格子所在的1连通块全部变成0。

牛牛想知道,自己有多少种不同的方案,可以把全部格子的1都变成0?

所谓连通块,是指方阵中的两个正方形共用一条边,即(x,y)和以下4个坐标的数是连通的:(x-1,y)、(x+1,y)、(x,y-1)、(x,y+1)

这个问题对于牛牛来说可能太简单了。于是他将这个问题变得更加复杂:
他会选择一个格子,将这个格子上的数字修改成1(如果本来就是1,那么不进行任何改变),再去考虑“点一成零”的方案数。
牛牛想知道,每次“将某个格子修改成1”之后,“把全部格子的1都变成0”的方案数量。
ps:请注意,每次“将某个格子修改成1”之后,状态会保留到接下来的询问。具体请参考样例描述。
由于方案数可能过大,请对109+7取模

 


思路:

首先处理出初始的方案。对于每个连通块,每个我都可以取C(1/size)个,对于取出来的每个我可以全排列。那么就是(x为联通块数量)x! *累乘(连通块)

然后看每次询问:如果是1,那么不变化。

如果是0,如果是孤立点,那么就*(x+1)

如果不是孤立点,先除去要合并的每个块的siz,再除去原来的x!,再乘上合并后的x'!,再乘上合并后的新块的siz。


一个惨痛的教训:由于开始没有意识到一定要来个并查集,我dfs缩点,缩完点后发现样例第二个不对,找了大约3小时多的bug。最终找到是由于dfs缩点我是找白色联通块去缩点的,剩下的没有被找的全都默认连上了0号点为父亲。也就是剩下的在同一个联通块中导致合并的时候合并错了。

特此提醒自己用并查集维护整个矩阵的联通的时候不要什么dfs缩点了。too young too simple

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=600;
typedef long long LL;
const LL mod=1e9+7;
inline LL read(){LL x=0,f=1;char ch=getchar();	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL ma[maxn][maxn];
LL fa[maxn*maxn],siz[maxn*maxn];
LL fac[maxn];
int dx[4]={0,1,0,-1};
int dy[4]={1,0,-1,0};
LL ksm(LL a,LL k){LL res=1;while(k>0){if(k&1) res=res*a%mod;k>>=1;a=a*a%mod;}return res%mod;}
LL find(LL x){
    if(fa[x]!=x) return fa[x]=find(fa[x]);
    else return fa[x];
}
void merge(LL x,LL y){
    if(find(x)!=find(y)){
        siz[find(x)]+=siz[find(y)];
        fa[find(y)]=find(x);
    }
}
int main(void)
{
  cin.tie(0);std::ios::sync_with_stdio(false);
  fac[0]=1;
  for(LL i=1;i<maxn;i++) fac[i]=(fac[i-1]%mod*i%mod)%mod;
  LL n;cin>>n;
  for(LL i=1;i<=n;i++){
      for(LL j=1;j<=n;j++){
        char str;cin>>str;
        ma[i][j]=(str-'0');
        fa[(i-1)*n+j]=(i-1)*n+j;
        if(ma[i][j]==1) siz[(i-1)*n+j]=1;
      }
  }
  for(LL i=1;i<=n;i++){
    for(LL j=1;j<=n;j++){
        for(LL k=0;k<4;k++){
            LL nx=i+dx[k];LL ny=j+dy[k];
            if(nx<1||ny<1||nx>n||ny>n) continue;
            if(ma[i][j]&&ma[nx][ny]&&find((i-1)*n+j)!=find((nx-1)*n+ny)){
                merge((i-1)*n+j,(nx-1)*n+ny);
            }
        }
    }
  }
  LL factimes=0;vector<LL>v;
  for(LL i=1;i<=n;i++){
    for(LL j=1;j<=n;j++){
        if(ma[i][j]&&find((i-1)*n+j)==(i-1)*n+j){
            factimes++;v.push_back((i-1)*n+j);
        }
    }
  }
  LL ans=1;
  for(auto i:v){
    ans=(ans%mod*siz[i]%mod)%mod;
  }
  ans=(ans%mod*fac[factimes]%mod)%mod;
  LL k;cin>>k;
  while(k--){
    LL x,y;cin>>x>>y;
    x++;y++;
    if(ma[x][y]==1){
        cout<<ans<<"\n";
    }
    else{
        ///是否孤立
        ma[x][y]=1;
        siz[(x-1)*n+y]=1;
        bool flag=0;
        for(LL i=0;i<4;i++){
            LL nx=x+dx[i];LL ny=y+dy[i];
            if(nx<1||nx>n||ny<1||ny>n) continue;
            if(ma[nx][ny]==1) flag=1;
        }
        if(flag==0){
            factimes++;
            ans=(ans%mod*factimes%mod)%mod;
            cout<<ans<<"\n";
            continue;
        }
        else{
            LL cnt=0;
            ans=(ans%mod*ksm(fac[factimes],mod-2)%mod)%mod;
            for(LL i=0;i<4;i++){
                LL nx=x+dx[i];LL ny=y+dy[i];

                if(ma[nx][ny]==0||nx<1||nx>n||ny<1||ny>n) continue;
                if( find((nx-1)*n+ny)!=find((x-1)*n+y) ){
                    cnt++;
                    ans=(ans%mod*ksm(siz[find( (nx-1 )*n+ny) ],mod-2)%mod)%mod;
                    ans=(ans%mod*ksm(siz[find( (x-1)*n+y )  ],mod-2)%mod)%mod;
                    merge( (nx-1)*n+ny,(x-1)*n+y );
                    ans=(ans%mod*siz[find( (x-1)*n+y )]%mod)%mod;
                }
            }
            factimes=(factimes-cnt+1);
            ans=(ans%mod*fac[factimes]%mod)%mod;
            cout<<ans<<"\n";
        }
    }
  }
return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值