https://ac.nowcoder.com/acm/contest/9981/D
链接:https://ac.nowcoder.com/acm/contest/9981/D
来源:牛客网
牛牛拿到了一个n*n的方阵,每个格子上面有一个数字:0或1
行和列的编号都是从0到n-1
现在牛牛每次操作可以点击一个写着1的格子,将这个格子所在的1连通块全部变成0。
牛牛想知道,自己有多少种不同的方案,可以把全部格子的1都变成0?
所谓连通块,是指方阵中的两个正方形共用一条边,即(x,y)和以下4个坐标的数是连通的:(x-1,y)、(x+1,y)、(x,y-1)、(x,y+1)
这个问题对于牛牛来说可能太简单了。于是他将这个问题变得更加复杂:
他会选择一个格子,将这个格子上的数字修改成1(如果本来就是1,那么不进行任何改变),再去考虑“点一成零”的方案数。
牛牛想知道,每次“将某个格子修改成1”之后,“把全部格子的1都变成0”的方案数量。
ps:请注意,每次“将某个格子修改成1”之后,状态会保留到接下来的询问。具体请参考样例描述。
由于方案数可能过大,请对109+7取模
思路:
首先处理出初始的方案。对于每个连通块,每个我都可以取C(1/size)个,对于取出来的每个我可以全排列。那么就是(x为联通块数量)x! *累乘(连通块)
然后看每次询问:如果是1,那么不变化。
如果是0,如果是孤立点,那么就*(x+1)
如果不是孤立点,先除去要合并的每个块的siz,再除去原来的x!,再乘上合并后的x'!,再乘上合并后的新块的siz。
一个惨痛的教训:由于开始没有意识到一定要来个并查集,我dfs缩点,缩完点后发现样例第二个不对,找了大约3小时多的bug。最终找到是由于dfs缩点我是找白色联通块去缩点的,剩下的没有被找的全都默认连上了0号点为父亲。也就是剩下的在同一个联通块中导致合并的时候合并错了。
特此提醒自己用并查集维护整个矩阵的联通的时候不要什么dfs缩点了。too young too simple
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=600;
typedef long long LL;
const LL mod=1e9+7;
inline LL read(){LL x=0,f=1;char ch=getchar(); while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL ma[maxn][maxn];
LL fa[maxn*maxn],siz[maxn*maxn];
LL fac[maxn];
int dx[4]={0,1,0,-1};
int dy[4]={1,0,-1,0};
LL ksm(LL a,LL k){LL res=1;while(k>0){if(k&1) res=res*a%mod;k>>=1;a=a*a%mod;}return res%mod;}
LL find(LL x){
if(fa[x]!=x) return fa[x]=find(fa[x]);
else return fa[x];
}
void merge(LL x,LL y){
if(find(x)!=find(y)){
siz[find(x)]+=siz[find(y)];
fa[find(y)]=find(x);
}
}
int main(void)
{
cin.tie(0);std::ios::sync_with_stdio(false);
fac[0]=1;
for(LL i=1;i<maxn;i++) fac[i]=(fac[i-1]%mod*i%mod)%mod;
LL n;cin>>n;
for(LL i=1;i<=n;i++){
for(LL j=1;j<=n;j++){
char str;cin>>str;
ma[i][j]=(str-'0');
fa[(i-1)*n+j]=(i-1)*n+j;
if(ma[i][j]==1) siz[(i-1)*n+j]=1;
}
}
for(LL i=1;i<=n;i++){
for(LL j=1;j<=n;j++){
for(LL k=0;k<4;k++){
LL nx=i+dx[k];LL ny=j+dy[k];
if(nx<1||ny<1||nx>n||ny>n) continue;
if(ma[i][j]&&ma[nx][ny]&&find((i-1)*n+j)!=find((nx-1)*n+ny)){
merge((i-1)*n+j,(nx-1)*n+ny);
}
}
}
}
LL factimes=0;vector<LL>v;
for(LL i=1;i<=n;i++){
for(LL j=1;j<=n;j++){
if(ma[i][j]&&find((i-1)*n+j)==(i-1)*n+j){
factimes++;v.push_back((i-1)*n+j);
}
}
}
LL ans=1;
for(auto i:v){
ans=(ans%mod*siz[i]%mod)%mod;
}
ans=(ans%mod*fac[factimes]%mod)%mod;
LL k;cin>>k;
while(k--){
LL x,y;cin>>x>>y;
x++;y++;
if(ma[x][y]==1){
cout<<ans<<"\n";
}
else{
///是否孤立
ma[x][y]=1;
siz[(x-1)*n+y]=1;
bool flag=0;
for(LL i=0;i<4;i++){
LL nx=x+dx[i];LL ny=y+dy[i];
if(nx<1||nx>n||ny<1||ny>n) continue;
if(ma[nx][ny]==1) flag=1;
}
if(flag==0){
factimes++;
ans=(ans%mod*factimes%mod)%mod;
cout<<ans<<"\n";
continue;
}
else{
LL cnt=0;
ans=(ans%mod*ksm(fac[factimes],mod-2)%mod)%mod;
for(LL i=0;i<4;i++){
LL nx=x+dx[i];LL ny=y+dy[i];
if(ma[nx][ny]==0||nx<1||nx>n||ny<1||ny>n) continue;
if( find((nx-1)*n+ny)!=find((x-1)*n+y) ){
cnt++;
ans=(ans%mod*ksm(siz[find( (nx-1 )*n+ny) ],mod-2)%mod)%mod;
ans=(ans%mod*ksm(siz[find( (x-1)*n+y ) ],mod-2)%mod)%mod;
merge( (nx-1)*n+ny,(x-1)*n+y );
ans=(ans%mod*siz[find( (x-1)*n+y )]%mod)%mod;
}
}
factimes=(factimes-cnt+1);
ans=(ans%mod*fac[factimes]%mod)%mod;
cout<<ans<<"\n";
}
}
}
return 0;
}