https://codeforces.com/contest/884/problem/D
题意:
给定一个n。
然后是n个不同颜色的球的数目。
开始这些球都在第一个盒子里。
你有下面的操作方法
① 把某一个不空盒子种的球拿出来。
② 把这些球按颜色装到3个或者2个盒子里,不同颜色可以装在一起。
而每次这种操作的花费为 你第一个操作拿出的球的数目。
问你如何操作,能够使花费最小。
思路:
正着想比较难,倒着想就是把很多球合并回第一堆的过程。其合并的过程就是一颗树。
那么如果是每次两堆,那就是合并果子那个题。这题k可以为3.是个k叉哈夫曼树。
k叉赫夫曼树:每次合并k个权值最小的节点,用优先队列存,直到只剩下不到k个节点
首先判满,计算多余节点个数,是(N-1)mod(k-1)。然后有两种方法补满,
①:把(多余的+1)个合并成1个
②:缺少的用0来补充
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=1e5;
typedef long long LL;
inline LL read(){LL x=0,f=1;char ch=getchar(); while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
priority_queue<LL, vector<LL>, greater<LL> >que;
int main(void)
{
cin.tie(0);std::ios::sync_with_stdio(false);
LL n;cin>>n;
for(LL i=1;i<=n;i++){
LL x;cin>>x;que.push(x);
}
if(n%2==0) que.push(0);
LL ans=0;
while(que.size()>1){
LL t1=que.top();que.pop();
ans+=t1;
LL t2=que.top();que.pop();
ans+=t2;
LL t3=que.top();que.pop();
ans+=t3;
que.push(t1+t2+t3);
}
cout<<ans<<"\n";
return 0;
}