https://codeforces.com/contest/1491/problem/D
题意:有一个序列1,2,3,……,正无穷。u可以到u+v当且仅当u&v=v。有q个查询,每个查询给出两个点u和v,问u是否能到v。
思路:
打个小范围的表找一下规律.
011-->101;011-->110;011-->100
110-->1000;110---->1010;110--->1100;
110 X-->111;
可以发现,1的数量不会变多,而且可以将1的位置往左移使得数字变大。于是这个规律可以用前缀和判断。
前缀和的时候注意,如果二进制从(1<<0)开始,这个位存储在id=0的数组,那么开新数组存的时候要注意边界。方便点就用原数组开前缀和
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=1e5+1000;
typedef long long LL;
inline LL read(){LL x=0,f=1;char ch=getchar(); while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL a[50],b[50];
LL sum1[50],sum2[50];
int main(void)
{
cin.tie(0);std::ios::sync_with_stdio(false);
LL t;cin>>t;
while(t--){
memset(sum1,0,sizeof(sum1));
memset(sum2,0,sizeof(sum2));
memset(a,0,sizeof(a));memset(b,0,sizeof(b));
LL x,y;cin>>x>>y;
for(LL i=0;i<=30;i++){
if(x&(1<<i)) a[i]=1;
else a[i]=0;
if(y&(1<<i)) b[i]=1;
else b[i]=0;
}
if(x>y){
cout<<"NO"<<"\n";
}
else{
for(LL i=1;i<=30;i++){
a[i]=a[i-1]+a[i];
b[i]=b[i-1]+b[i];
}
/* for(LL i=1;i<=30;i++) cout<<sum1[i]<<" ";
cout<<"\n";
for(LL i=1;i<=30;i++) cout<<sum2[i]<<" ";
cout<<"\n";*/
bool f=1;
for(LL i=0;i<=30;i++){
if(a[i]<b[i]){
f=0;
break;
}
}
if(f==1) cout<<"YES"<<"\n";
else cout<<"NO"<<"\n";
}
}
return 0;
}