https://codeforces.com/problemset/problem/479/E
思路:
开始以为反复跳会有后效性..是我理解错了..在dp的第i次和第i-1次是不存在后效性的。
定义dp[i][j]表示第i趟的时候到第 j 楼层的方案数。
转移方程dp[i][j] += dp[i-1][k] (k = 1,….,n)
然后是n^3。
优化,发现对于j可以转移的地方是一整段的,可以前缀优化。
注意最后要把上一层也在j楼层的情况减了。
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=5e3+100;
typedef long long LL;
const LL mod=1e9+7;
inline LL read(){LL x=0,f=1;char ch=getchar(); while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL pre[maxn];
LL dp[maxn][maxn];
int main(void){
cin.tie(0);std::ios::sync_with_stdio(false);
LL n,a,b,k;cin>>n>>a>>b>>k;
dp[0][a]=1;
for(LL i=1;i<=k;i++){
pre[0]=0;
for(LL j=1;j<=n;j++){
pre[j]=(pre[j-1]%mod+dp[i-1][j]%mod)%mod;
}
for(LL j=1;j<=n;j++){
if(j==b) continue;
if(j<b){
dp[i][j]=(pre[ (abs(b-j)-1)/2+j]%mod+mod)%mod;
}
if(j>b){
dp[i][j]=(pre[n]%mod-pre[j-(abs(b-j)+1)/2]%mod+mod)%mod;
}
dp[i][j]=(dp[i][j]%mod-dp[i-1][j]%mod+mod)%mod;
}
}
LL ans=0;
for(LL j=1;j<=n;j++){
ans=(ans%mod+dp[k][j]%mod)%mod;
}
cout<<ans<<"\n";
return 0;
}