D - Fox And Jumping(思维+dp+裴蜀定理)

68 篇文章 1 订阅
56 篇文章 1 订阅

https://codeforces.com/contest/510/problem/D


思路:

其实可以变成是否可以取一些数,其方程组可以得到t=1,因为1才能到任意距离嘛。因此裴蜀定理就可以知道是其取的数要gcd=1。

由此变成取一定数使得其gcd=1的代价最小。

dp[i]:其gcd为i的时候的最小代价。

由于倒推有一点麻烦。改成顺推,由可以更新的下一状态为dp[ gcd(a[i],j)] 其中这个j是之前出现了的gcd值,dp[gcd(a[i],j)]=min(dp[gcd(a[i],j) ,  dp[j]+c[i] (本次更新) ]

由于gcd可以很大,直接开数组会炸。因此可以离散化。

细节注意数值会出现重复的,所以开始初始化一个数的gcd的时候最后要更新成最小。

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=310;
typedef long long LL;
inline LL read(){LL x=0,f=1;char ch=getchar();	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
map<LL,LL>dp;
LL a[maxn],c[maxn];
int main(void){
   cin.tie(0);std::ios::sync_with_stdio(false);
   LL n;cin>>n;
   for(LL i=1;i<=n;i++) cin>>a[i];
   for(LL i=1;i<=n;i++) cin>>c[i];
   for(LL i=1;i<=n;i++){
       ///dp[a[i]]=c[i];注意重复
       if(!dp.count(a[i])) dp[a[i]]=c[i];
       else dp[a[i]]=min(dp[a[i]],c[i]);
   }
   for(LL i=1;i<=n;i++){
       for(auto j:dp){
          LL g=__gcd(j.first,a[i]);
          if(!dp.count(g)) dp[g]=dp[j.first]+c[i];
          else dp[g]=min(dp[g],dp[j.first]+c[i]);
       }
   }
   if(!dp[1]) cout<<"-1"<<"\n";
   else cout<<dp[1]<<"\n";
   return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值