人形机器人:政策推动下的行业变革与技术突破
政策东风助力产业起航
自 2023 年 11 月工信部印发《人形机器人创新发展指导意见》以来,政策层面为行业注入了强大动力。该意见明确提出,到 2025 年,我国人形机器人创新体系初步建立,“大脑、小脑、肢体” 等一批关键技术取得突破,确保相关技术产品对人和环境友好。地方政府也纷纷响应,以上海为例,其发布的产业规划中,对人形机器人相关企业给予研发补贴、场地支持等优惠政策,吸引了大量企业入驻,形成产业集聚效应。政策的持续发力,为行业发展营造了良好的政策环境,从研发支持到市场培育,全方位推动人形机器人产业的发展。
行业蓬勃发展,竞争格局初现
天眼查专业版数据显示,截至目前,我国现存机器人相关的企业有 84.5 万余家。从地域分布上看,广东省、江苏省、山东省机器人相关企业数量位居前列,分别拥有 16 万余家、10.6 万余家、6.3 万余家。超 7 成的相关企业成立于 5 年内,成立于 1 年内的相关企业占比 22.9%,这一数据直观反映出行业的热度与活力。美的集团整合研发资源成立人形机器人创新中心,小米推出全尺寸人形仿生机器人 CyberOne,宇树发布通用人形机器人 H1 等,众多企业纷纷布局,竞争激烈。在应用场景方面,工业生产、社会服务、救援救灾等领域均有涉足,如优必选的人形机器人 WalkerS 已进入蔚来汽车工厂参与生产环节,服务场景不断拓展,市场规模持续扩大。
技术门槛高,跨学科融合是关键
人形机器人开发涉及机械、电子、控制、计算机科学、人工智能等多学科领域。在基础学科知识方面,数学基础中的线性代数用于运动学和动力学建模,微积分助力控制系统设计,概率与统计在传感器数据处理中发挥重要作用;物理学基础里,经典力学用于机器人运动建模,材料力学帮助进行关节和结构件强度分析。机械设计与硬件方面,人形机器人通常需要 20 + 自由度,对关节类型、材料选择以及电机、传感器的配置都有严格要求。软件开发层面,Python 用于快速原型开发与机器学习框架搭建,同时需兼顾实时性与环境适应能力。以波士顿动力的 Atlas 机器人为例,其融合了光学雷达、激光测距仪等多种技术,通过复杂算法实现高难度动作,充分展示了跨学科技术融合的成果。想要在这个领域取得突破,研发团队需具备深厚的多学科知识储备与强大的技术整合能力。
技术难点
人形机器人的研发涉及多个复杂的技术领域,以下是一些主要的技术难点分析:
- **机械结构设计**
- **仿人形态与灵活性**:要实现与人类相似的外观和运动能力,人形机器人需要众多的关节和自由度,这增加了机械结构设计的复杂性。例如,人类的手臂有多个关节,可以完成各种精细动作,人形机器人要模仿这种灵活性,就需要设计出精巧的关节结构和传动系统,同时还要保证足够的强度和稳定性。
- **轻量化与高强度材料**:为了使机器人能够高效运动且不消耗过多能量,需要使用轻量化的材料来制造机身和关节部件。但同时,这些材料还必须具备足够的强度和刚度,以承受机器人运动时产生的力和扭矩。寻找和研发满足这些要求的新型材料,并合理应用于机器人的结构设计中,是一个关键的技术难点。
- **动力系统**
- **能量密度与续航能力**:人形机器人需要携带足够的能量来支持其长时间运行,但由于其体积和重量的限制,电池的能量密度成为关键问题。目前的电池技术还难以满足人形机器人长时间高能耗运行的需求,例如,一些人形机器人在满负荷运行时,续航时间可能只有几个小时,这严重限制了其实际应用场景。
- **动力输出与控制**:人形机器人的各个关节需要精确的动力输出来实现各种动作,这就要求动力系统不仅要提供足够的扭矩和功率,还要能够实现快速、精确的控制。此外,不同关节在不同运动状态下的动力需求差异很大,如何根据机器人的实时运动状态动态调整动力输出,也是动力系统设计中的一个难题。
- **控制系统**
- **运动控制算法**:人形机器人的运动控制需要复杂的算法来实现。例如,要实现机器人的稳定行走,需要考虑到机器人的重心变化、腿部关节的协调运动以及地面的不平整等因素。开发能够实时处理这些复杂信息并生成精确运动指令的控制算法是一项极具挑战性的任务。
- **多传感器融合**:为了感知周围环境并做出准确的反应,人形机器人需要集成多种传感器,如视觉传感器、听觉传感器、力传感器、陀螺仪等。如何将这些不同类型传感器的数据进行有效融合,提取出有用的信息,并用于控制机器人的行为,是控制系统面临的一个重要技术难点。
- **人工智能与认知能力**
- **环境感知与理解**:人形机器人需要能够准确感知周围的环境,包括识别物体、理解场景、检测障碍物等。虽然目前计算机视觉和传感器技术已经取得了很大进展,但要让机器人像人类一样准确、快速地理解复杂的环境信息,仍然存在很多困难。例如,在光线变化、物体遮挡等复杂情况下,机器人的视觉识别能力可能会受到很大影响。
- **决策与规划**:基于对环境的感知,人形机器人需要能够做出合理的决策并规划出相应的行动方案。这需要机器人具备一定的认知能力和推理能力,能够根据不同的任务需求和环境条件,选择最优的行动策略。然而,现实世界中的情况往往非常复杂,机器人需要处理大量的不确定性信息,这对其决策与规划能力提出了很高的要求。
- **人机交互**:人形机器人要能够与人类进行自然、流畅的交互,包括语音交互、肢体语言交互等。这不仅要求机器人能够准确理解人类的语言和意图,还能够以合适的方式回应人类。实现高效、自然的人机交互是一个复杂的技术难题,需要在语音识别、自然语言处理、情感计算等多个领域取得突破。
在人形机器人的算法领域,涉及运动控制、环境感知与建模、决策规划以及人机交互等多方面的技术细节,以下是具体介绍:
运动控制算法
-
逆运动学算法:用于根据机器人末端执行器(如手、脚)的期望位置和姿态,计算出各个关节的角度。常见的方法有解析法和数值法。解析法通过建立机器人运动学模型,利用数学公式直接求解关节角度,计算速度快,但对于复杂的机器人结构,推导过程复杂。数值法如牛顿 - 拉夫逊法,通过迭代逼近的方式求解,适用于各种复杂结构,但计算量较大,实时性要求高时需优化算法。
-
轨迹规划算法:在机器人运动过程中,需要规划出一条平滑、安全的轨迹,以避免碰撞和满足运动性能要求。例如,在机器人行走时,要规划出腿部关节的运动轨迹,使机器人能够稳定地移动。常用的轨迹规划方法有多项式插值法、样条曲线法等。多项式插值法通过给定的起始点、终点和中间约束条件,构造多项式函数来描述轨迹,具有计算简单、易于实现的优点。样条曲线法则能更好地保证轨迹的平滑性和连续性,适用于对运动精度要求较高的场景。
-
反馈控制算法:为了使机器人的实际运动能够准确跟踪期望轨迹,需要引入反馈控制。常见的反馈控制算法有比例 - 积分 - 微分(PID)控制、模型预测控制(MPC)等。PID 控制根据误差的比例、积分和微分来调节控制量,具有结构简单、鲁棒性强的特点,广泛应用于机器人的关节控制。MPC 则是基于模型预测未来的系统状态,并根据预测结果优化控制量,能够考虑到系统的约束条件,在复杂的运动控制场景中表现出更好的性能,但计算复杂度较高。
环境感知与建模算法
-
视觉感知算法:人形机器人通常使用摄像头作为主要的视觉传感器,视觉感知算法用于从图像中提取有用的信息。首先是目标检测算法,如基于深度学习的卷积神经网络(CNN)算法,如 Faster R - CNN、YOLO 等,能够快速检测出图像中的物体,并识别其类别和位置。然后是姿态估计算法,通过分析物体的特征点或轮廓,计算出物体相对于机器人的姿态。此外,立体视觉算法通过对左右摄像头获取的图像进行匹配和计算,获取场景的深度信息,为机器人的导航和避障提供依据。
-
激光雷达感知算法:激光雷达通过发射激光束并测量反射光的时间来获取环境的三维点云数据。在激光雷达感知算法中,点云滤波算法用于去除噪声点和离群点,提高点云数据的质量。特征提取算法则从点云中提取出关键特征,如平面、直线、角点等,用于环境建模和定位。同时,基于激光雷达的地图构建算法,如同时定位与地图构建(SLAM)算法,能够实时地构建机器人周围环境的地图,并确定机器人在地图中的位置。
-
多传感器融合算法:为了充分利用不同传感器的优势,提高环境感知的准确性和可靠性,需要进行多传感器融合。常见的多传感器融合算法有卡尔曼滤波、扩展卡尔曼滤波、粒子滤波等。卡尔曼滤波通过建立系统的状态空间模型,对传感器数据进行最优估计,能够有效地融合来自不同传感器的信息,抑制噪声。扩展卡尔曼滤波则适用于非线性系统,通过对非线性函数进行线性化近似,实现对状态的估计。粒子滤波基于蒙特卡洛方法,通过大量的粒子来表示系统的状态,能够处理复杂的非线性、非高斯系统,在多传感器融合中具有较好的性能。
决策规划算法
-
路径规划算法:根据机器人的任务和环境信息,规划出一条从当前位置到目标位置的无碰撞路径。经典的路径规划算法有 A * 算法、Dijkstra 算法等,它们通过搜索地图中的节点,寻找最短路径。对于复杂的环境,基于采样的路径规划算法,如快速探索随机树(RRT)算法,能够更有效地搜索到可行路径。此外,考虑到机器人的运动学和动力学约束,还需要采用基于运动学规划的算法,如轨迹优化算法,来生成满足机器人运动能力的路径。
-
行为决策算法:人形机器人需要根据环境感知和任务要求,做出合理的行为决策。基于规则的决策方法通过事先定义好的规则来判断机器人的行为,简单直观,但缺乏灵活性。基于机器学习的决策方法,如强化学习算法,通过让机器人在环境中进行试错学习,与环境进行交互并获得奖励反馈,逐渐学习到最优的行为策略。例如,机器人可以通过强化学习学习如何在不同的场景下选择合适的动作,以最大化任务的完成效率和成功率。
人机交互算法
-
语音交互算法:包括语音识别、语音合成和自然语言处理。语音识别算法将人类语音转换为文字,常用的方法有隐马尔可夫模型(HMM)和深度神经网络(DNN)相结合的方法。语音合成算法则将文字转换为语音,通过文本分析、韵律生成和波形合成等步骤,生成自然流畅的语音。自然语言处理算法用于理解和处理人类输入的文字信息,包括词法分析、句法分析、语义理解等,使机器人能够准确理解人类的意图,并做出合适的回应。
-
肢体语言交互算法:通过分析人类的肢体动作、表情等信息,理解人类的情感和意图。例如,基于计算机视觉的姿态估计算法可以识别出人类的身体姿势和动作,情感识别算法通过分析面部表情来判断人类的情绪状态。机器人可以根据这些信息调整自己的行为和交互方式,实现更加自然、人性化的交互。