设计说明
HashMap源码中对源码的设计已经做了详细的说明,避免造成误导,还是直接引用源码中的英文说明,感兴趣的可以自行阅读理解一下
/*
* Implementation notes.
*
* This map usually acts as a binned (bucketed) hash table, but
* when bins get too large, they are transformed into bins of
* TreeNodes, each structured similarly to those in
* java.util.TreeMap. Most methods try to use normal bins, but
* relay to TreeNode methods when applicable (simply by checking
* instanceof a node). Bins of TreeNodes may be traversed and
* used like any others, but additionally support faster lookup
* when overpopulated. However, since the vast majority of bins in
* normal use are not overpopulated, checking for existence of
* tree bins may be delayed in the course of table methods.
*
* Tree bins (i.e., bins whose elements are all TreeNodes) are
* ordered primarily by hashCode, but in the case of ties, if two
* elements are of the same "class C implements Comparable<C>",
* type then their compareTo method is used for ordering. (We
* conservatively check generic types via reflection to validate
* this -- see method comparableClassFor). The added complexity
* of tree bins is worthwhile in providing worst-case O(log n)
* operations when keys either have distinct hashes or are
* orderable, Thus, performance degrades gracefully under
* accidental or malicious usages in which hashCode() methods
* return values that are poorly distributed, as well as those in
* which many keys share a hashCode, so long as they are also
* Comparable. (If neither of these apply, we may waste about a
* factor of two in time and space compared to taking no
* precautions. But the only known cases stem from poor user
* programming practices that are already so slow that this makes
* little difference.)
*
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*
* The root of a tree bin is normally its first node. However,
* sometimes (currently only upon Iterator.remove), the root might
* be elsewhere, but can be recovered following parent links
* (method TreeNode.root()).
*
* All applicable internal methods accept a hash code as an
* argument (as normally supplied from a public method), allowing
* them to call each other without recomputing user hashCodes.
* Most internal methods also accept a "tab" argument, that is
* normally the current table, but may be a new or old one when
* resizing or converting.
*
* When bin lists are treeified, split, or untreeified, we keep
* them in the same relative access/traversal order (i.e., field
* Node.next) to better preserve locality, and to slightly
* simplify handling of splits and traversals that invoke
* iterator.remove. When using comparators on insertion, to keep a
* total ordering (or as close as is required here) across
* rebalancings, we compare classes and identityHashCodes as
* tie-breakers.
*
* The use and transitions among plain vs tree modes is
* complicated by the existence of subclass LinkedHashMap. See
* below for hook methods defined to be invoked upon insertion,
* removal and access that allow LinkedHashMap internals to
* otherwise remain independent of these mechanics. (This also
* requires that a map instance be passed to some utility methods
* that may create new nodes.)
*
* The concurrent-programming-like SSA-based coding style helps
* avoid aliasing errors amid all of the twisty pointer operations.
*/
相关属性说明
HashMap的默认初始化容量,必须是2的冥次方,为什么必须是2的冥次方?
,在后续的tableSizeFor会做个说明
/** 默认初始化的容量
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/** 最大的容量
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/** 默认的加载因子
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
链表转换成树的阈值,当链表长度达到TREEIFY_THRESHOLD
时,则会触发树化的操作
将链表转换成树,至于为什么是8,其实可以在上面官方提供的实现说明中找到答案,是根据时间和空间的综合考虑的结果
Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution
理论上,在随机的hashCode条件下,链表元素是遵循泊松分布的,当元素达到8的时候,概率为0.00000006,几乎是不可能事件
0: 0.60653066
1: 0.30326533
2: 0.07581633
3: 0.01263606
4: 0.00157952
5: 0.00015795
6: 0.00001316
7: 0.00000094
8: 0.00000006
more: less than 1 in ten million
但是JDK没办法控制用户自定义的hashCode,如果用户自己定义了一个随机性很差的hashCode,那就没办法遵循上面的原则,所以综合了原本的随机性和用户自定义的行为,这里就选择了8作为转换的阈值
当长度降为6时,会触发链化操作,即将树再转换成链表,这里为什么选择6呢,主要是因为如果元素在8附近徘徊的话,就会频繁的触发转换操作,为了避免这个问题,所以选择了6作为降级的阈值
/** 链表树化的阈值
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/** 树转换成链表的阈值
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
构造方法
HashMap(int initialCapacity, float loadFactor)
HashMap(int initialCapacity)
HashMap()
HashMap(Map<? extends K, ? extends V> m)
HashMap数据结构
HashMap的底层数据结构如下,由一个数组和多个链表/树组成,每个数组元素都是一个链表/树
当链表达到一定长度时就会转换成树
数组------链表
|---|
| 0 |->| a |->| b |->| c |->| d |->null
|---|
| 1 |->| a |->| b |->| c |->| d |->| e |->null
|---|
| 2 |->| a |->null
|---|
| 3 |->| a |->| b |->| c |->| d |->null
|---|
| 4 |->| a |->| b |->| c |->null
|---|
| 5 |->| a |->null
|---|
| 6 |->null
|---|
| 7 |->| a |->| b |->null
|---|
Map<String, String> m = new HashMap<>(cap);
我们知道HashMap规定初始容量必须是2的冥次方,所以如何保证初始化的容量是2的冥次方就是一个需要关注的点
int cap = 11;
Map<String, String> m = new HashMap<>(cap);
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
为什么要是2的冥次方
为什么要保证容量为2的冥次方,这里简要说明一下,因为HashMap中计算某个元素的索引值时是(n - 1) & hash
, 这里n为容量,当n为2的冥次方时,n - 1 就变成了所有比特位都为1的数,这样在进行后续的&运算时,可以保证hash中的所有比特位都能起到作用,因为&运算是相同为1,不同为0,所以当比特位都为1时,就能保留尽可能多的1值,并且1值由hash本身决定,不会受到n的影响,如果不是2的冥次方,那其二进制就是0和1相间的随机分布,这样就会导致hash本身的值有部分要被丢弃掉
例如 n是2的冥次方,其n-1的二进制都是
0000000000000000111111111111111
000000000000000000000111111111
...
等等类似的,在进行&
运算时,结果由hash本身决定
如果n不是2的冥次方,那对应的n-1就可能是
00000001000101010010101010011
00000001010101010000000010011
...
这样n-1中所有的比特位为0的&运算结果都为0,就导致了计算结果不稳定,并且不是有hash主导的
如何保证容量为2的冥次方 - tableSizeFor(initialCapacity)
指定初始化数组容量,会调用tableSizeFor(initialCapacity)来保证初始化的数组容量为2的冥次方
static final int tableSizeFor(int cap) {
int n = cap - 1;
// 右移1位之后与自己进行或运算,可以把前两位变为1
n |= n >>> 1;
// 这里由于前一步已经变成了前2位是1了,所以需要右移2位再和上一步的计算结果进行或运算
// 把前四位变成1
n |= n >>> 2;
// 这里前一步已经将结果变成前4位为1的数了,所以需要右移4位后继续运算
n |= n >>> 4;
// 这里前一步已经将结果变成前8位为1的数了,所以需要右移8位后继续运算
n |= n >>> 8;
// 这里前一步已经将结果变成前16位为1的数了,所以需要右移16位后继续运算
n |= n >>> 16;
// 到这已经将整个int的32位都做了处理(如果需要的话),保证了每一位都是1
// 然后将返回结果+1就变成了一个2的冥次方的数
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
例如初始化容量cap为11, 则n = cap - 1; 二进制为: 1010
- 第一步计算右移1位之后与自己进行或运算: 至少保证前2位都是1
1010
101 -> 1111
- 第二步计算右移2位之后与上一步结果进行或运算:至少保证前4位都是1
1111
0011 -> 1111
- 第三步计算右移4位之后与上一步结果进行或运算:至少保证前8位都是1
注:由于我们给的初始容量比较小,只占了四个比特位,所以在第二步执行之后,就已经所有比特位都为1了,后续的计算结果不变都是四个1
1111
0000 -> 1111
- 第四步计算右移8位之后与上一步结果进行或运算:至少保证前16位都是1
1111
0000 -> 1111
- 第五步计算右移16位之后与上一步结果进行或运算:至少保证前32位都是1,这里就结束了,因为int最长就到32位,如果给的初始值足够大,则会到最后这一步才能保证所有的比特位都变成1
1111
0000 -> 1111
最后如果是正常的int值,则需要+1再返回,由于所有的比特位都是1,+1之后就变成了1后面全是0,即2的冥次方
m.put(“key1”, “value1”)
HashMap通过put方法添加元素的key和value,基本的思想就是通过计算key在内部table的索引值,然后将value放置到索引值对应的table中的元素上,在计算索引值的时候可能会出现索引值相同的情况,这里就发生了hash碰撞,一般情况下hash碰撞有以下四种解决方案:
- 开放地址法
- 再哈希法
- 链地址法(拉链法)
- 建立一个公共溢出区
HashMap中采用的就是拉链法
来解决hash碰撞/冲突的问题,这样就可以不用创建一个超大的数组来存放元素,降低内存损耗,同时又可以存放大量元素,多余的元素通过在数组上拉链存储,由于数组本身是可以通过下标随机访问的,所以HashMap在获取元素的时候能够快速的定位到指定位置上的元素,如果元素上的值不是要获取的值,那就继续遍历链表,这样既保留了数组快速定位的优势,又增加了链表无限追加的能力
不过虽然采用拉链法可以解决hash碰撞,但是也会存在极端的情况下,当所有的元素索引值都一样时,就相当于拉了一个很长的链,我们知道链表和数组不同,没办法通过索引随机访问,只能从头遍历元素,直到找到目标元素,这就出现遍历的性能问题,当链表越来越长时遍历的性能就会越来越差
问题
- 如何增加hash的随机性,使每个元素计算出的索引值尽可能的不同,以此增加元素在数组中的散列程度
- 如何避免极端情况下,链表过长失去快速检索的优势
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
增加hash的散列程度
HashMap内部定义了一个hash(key)
方法,是将key的原始hashCode右移了16位然后再与自身进行异或运算,目的是为了将hashcode的高16位低16位混合(这里是个思考点,下面会说明)
该hash方法与后面计算索引值有关联,后面的索引值计算公式是(n - 1) & hash
,n是数组的长度,
- 由于n总是为2的冥次方,所以n-1就变成了一个二进制形式都是1的数,这样可以保证&运算时hash的所有bit位都能参与运算,从这里可以看出为什么要保证数组容量是2的冥次方。
因为如果是2的冥次方,n-1之后就变成了所有比特位都为1的数,这样进行&运算时,实际的值就完全取决于hash本身,否则索引值就会受到n的影响而不稳定
例如 假设n为5,二进制为:101,与hash进行&运算之后,中间那一位就会变成0,导致hash里面对应的bit位数据失效,因为&运算只有都为1才是1,否则就是0
注: 这里如果直接用n进行&运算的话就会极大可能的导致发生hash冲突或者碰撞,因为n是2的冥次方,二进制就是最高位为1,其余所有bit位都是0,这样与hash在进行&运算就没有意义了,因为其他位运算结果都是0,只有最高位是1
如果有人有这个疑问的话,可以看看,没有疑问那就直接跳过吧。索引计算公式:
(n - 1) & hash
的一个小疑问,之前看源码的时候总是会有点疑惑,这里不会出现下标溢出吗?后来将数据都转换成二进制就变的豁然开朗,(n - 1)
的二进制是比n少1位的,例如n 是 1000000
, 则(n - 1) 就是 0111111
,所以在计算的时候,前面都是0,只有后面的1会参与运算,这样是不可能超过数组容量的,也就不会发生溢出的情况
- 正常情况下table的数据都是比较少的,与hash进行&运算时,hash中超过数组长度的部分都不会参与到运算,这样就意味着hash本身的高位数据大部分都会被丢弃掉,所以HashMap重新定义了一个hash(key)方法,将高位与低位做了混合,这样高位的数据就不会浪费,同时也增加了索引计算结果的随机性,即增加了散列程度降低hash碰撞的可能性
例如: 字符串
"test"
hashcode
3556498
"test"
hashcode 对应的二进制形式
1101100100010010010010
假设n为8,二进制为 : 1000, n - 1 : 111
(n - 1) & "test".hashCode()
0000000000000000000111
1101100100010010010010 > 010
hash("test".hashCode())
1101100100010010010010
0000000000000000110110 > 1101100100010010100100
(n - 1) & hash("test".hashCode())
0000000000000000000111
1101100100010010100100 > 100
put方法简要说明
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 判断table是否为空,如果为空需要先初始化,因为在默认创建的时候没有创建数组元素,需要调用resize()方法来执行数组初始化操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 通过(n - 1) & hash计算key对应的索引值,定位table中的元素
// 这里计算key在数组中位置的公式设计已经在上面做了详细说明
// 如果对应位置上的元素为null,则直接新建一个结点元素存放到table指定位置上
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 如果table指定位置上的元素不为空,则需要判断这个元素的key是否和要放置元素的key
Node<K,V> e; K k;
// 判断元素的hash是否相等, 判断元素的key是否相等
// 如果hash和key都相等,则说明这个元素和放入的元素一样
// 否则需要从该元素往后遍历:可能是链表也可能是树
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 如果该结点是树,则使用树的方式去遍历元素
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 否则该结点为链表,遍历链表
for (int binCount = 0; ; ++binCount) {
// 如果元素next为null,则说明该位置上就一个值,直接追加在链表尾部
if ((e = p.next) == null) {
// 新建元素插入到链表尾部
p.next = newNode(hash, key, value, null);
// 元素插入之后,需要判断链表长度,如果达到转换成树的阈值,则将链表转换成树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果元素不为null,判断与传入的key是否相等,如果相等则说明该元素的key与传入的key相同
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 上一步遍历的目标元素
// 如果目标元素不为空则表示已存在相同key的元素
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 跟据onlyIfAbsent判断是否需要覆盖原始的值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 如果是新的元素,则会走到这里,增加元素的数量,并判断是否需要扩容
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
put的基本流程:
- 如果table为空,则初始化table
- 计算索引值,定位table中的元素
- 如果为空则直接创建新的结点存放到数组中
- 如果不为空则说明发生了hash碰撞,按照HashMap的解决方案,需要遍历后面的链表,但是jdk1.8做了优化,数组元素可能是链表也可能是树:如果是树则用遍历树的方式遍历需要放置的元素,如果是链表则用链表的方式遍历需要放置的元素
- 如果HashMap中存在key相同的结点,则根据onlyIfAbsent判断是否需要覆盖旧值,如果HashMap中没有对应的key,则表明创建了新的结点
5、如果是创建新的结点,需要判断是否达到了扩容的阈值,如果达到了,则需要进行扩容操作
resize()方法说明
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
// 将原始的table赋值给oldTab
Node<K,V>[] oldTab = table;
// 记录oldTab的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 记录扩容之前的阈值
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 如果oldCap大于0,则判断是否大于最大的容量
// 大于HashMap允许的最大容量,则直接返回最大值
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 如果小于最大值,则进行右移1位1操作,即扩容后的容量为之前的两倍
// 需要判断扩容后的容量是否大于最大容量,并且旧的容量是否大于或者等于默认的初始化容量
// 如果扩容后不大于最大容量,并且就的容量大于初始容量,则将阈值也右移1位
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 上述都是初始化新的值,包括新的容量,新的阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 如果老的数组不为null,则说明有值,需要将旧值转移到新的数组中
if (oldTab != null) {
// 遍历旧数组的所有数据
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果元素的next为null,则说明这个位置上的元素就一个值
// 直接用新的容量计算索引值放置到新的数组中
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果next不为null,则说明该元素有多个值
// 判断元素类型,如果是tree则用tree的方式遍历赋值
// 如果是链表则用链表方式遍历赋值
else if (e instanceof TreeNode)
// tree
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表
// 这里有个需要注意的点,就是链表迁移之后,一般会变成两条链表,分散到新数组的两边
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 这里使用就的容量计算索引,直接使用实际的容量,没有减一,即形式为最高位1其余都是0的二进制
// 当进行&运算时,除了最高位可能为1以外,其余都为0
// 所以当计算的索引值为0时,即元素位置不变,放在原来的位置
// 当计算的索引值为1时,则位置发生变化,放在原来位置+oldCap的位置上
if ((e.hash & oldCap) == 0) {
// 生成原来位置上(新数组的低位)的一条链表
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
// 生成原来位置+oldCap上(新数组的高位)的一条链表
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
// 原位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
// 原位置+oldCap
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
m.get(“key5”)
HashMap的get方法相对比较简单,主要就是根据key的hash值计算索引值,定位到目标元素
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 当数组不为空时,计算索引值获取元素(或者说头结点)
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 判断头结点是否为目标元素
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 继续遍历结点
if ((e = first.next) != null) {
if (first instanceof TreeNode)
// 按照树的方式遍历
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//按照链表的方式遍历
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
未完待续…