1.1 构造法
首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。
1.2 删除法
单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法
算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间b,c,在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

BP算法中,权值和阈值是每训练一次,调整一次。
逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。
神经网络算法隐含层的选取
最新推荐文章于 2022-10-10 16:35:37 发布
本文探讨了BP神经网络中隐含层节点数的优化方法,包括构造法、删除法及黄金分割法,旨在提升网络的逼近能力和泛化能力。通过逐步试验,对比不同节点数下的预测性能,最终选定最佳隐层节点数。

1万+

被折叠的 条评论
为什么被折叠?



