Codeforces Round #168 (Div. 1)

题目:http://www.codeforces.com/contest/274


A:如果出现两个数x,y使k*x=y,那么其任意一个都行;如果出现多个数成以k为倍数的等比,那么从最大或最小开始取,按顺序取一个舍弃一个,一定能是最优解。做法就是先排序,按大到小的顺序遍历,取a[i]的时候删去a[i]/k,这样取得的数的集合就是最大的集合

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;

const int inf=1<<29;

int a[100010];
map<int,int> mp;
int main() {

	int n,k;
	scanf("%d%d",&n,&k);
	for(int i=0;i<n;i++){
		scanf("%d",&a[i]);
		mp[a[i]]=i;
	}
	sort(a,a+n);
	int ans=0;
	for(int i=n-1;i>=0;i--){
		if(mp.find(a[i])==mp.end())
			continue;
		int t=a[i];
		if(t%k==0){
			mp.erase(t/k);
		}
		ans++;
	}
	printf("%d\n",ans);
}


B:以1为根,从叶子节点往跟递推;假设u点的子节点(v1,v2,v3...)全为叶子节点,这些点变为0所要的操作是+k1,+k2,-k3,-k4....,将这些点按加减分成两类,需要加的点一起进行操作,要减的一起操作,这样最优,可以算出将这些点变为0的最少操作次数,这些操作导致u的值发生变化,再把u的值变0所需的操作次数也可以算出,那么就得到了最优情况下将以u为根的子树值都变成0所需的加的次数U[u]和减的次数D[u]。依次递推就能得到U[1],D[1]。答案就是U[1]+D[1]。

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;

const int inf=1<<29;

#define N 100010

vector<int> e[N];
ll ans,val[N];
ll U[N],D[N];
void dfs(int u,int pre)
{
	for(int i=0;i<(int)e[u].size();i++){
		int v=e[u][i];
		if(v==pre) continue;
		dfs(v,u);
		U[u]=max(U[u],U[v]);
		D[u]=max(D[u],D[v]);
	}
	val[u]+=U[u]-D[u];
	if(val[u]<0) U[u]-=val[u];
	else D[u]+=val[u];
}
int main() {

	int n,x,y;
	scanf("%d",&n);
	for(int i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		e[x].push_back(y);
		e[y].push_back(x);
	}
	for(int i=1;i<=n;i++){
		scanf("%d",&x);
		val[i]=x;
	}
	dfs(1,1);
	printf("%I64d\n",U[1]+D[1]);
}

D:把列之间的关系转化为图进行拓扑排序是很容易想到的一个突破口,关键在于如何建图。举一个只有一行的例子:1,2,3,4,5。点1比其他点都小,所以点1向其他4点各连一条边,点2往3,4,5连边,依次类推。。。这样正确但边数太多了。对于这个例子可以这样建图1->2->3->4->5 (每个点只向最小的比其大的点连边),边的数量大大减少。但如果是1,1,1,2,2,2这种数据又行不通了,所有的1都要向每个2连边,边的数量还是平方级别的。这里我们可以用添加虚拟节点的方法来解决,对于第2个例子,增加3个虚拟节点v1,v2,v3,v1向所有1连边,所有1向v2连边,v2向所有2连边,所有2向v3连边。这种方法保证边的数量是O(n*m)的

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;

const int inf=1<<29;

#define N 100010

vector<int> e[N*3];
int a[N],p[N];

int cmp(int x,int y)
{
	return a[x]<a[y];
}

int cnt[N*3];
vector<int> ans;
int TopoOrder(int n) {
	int i, top = -1;
	for (i = 1; i <= n; ++i)
		if (cnt[i] == 0) {
			cnt[i] = top;
			top = i;
		}
	for (i = 1; i <= n; ++i)
		if (top == -1) {
			return 0;
		} else {
			int j = top;
			top = cnt[top];
			ans.push_back(j);
			for (int k = 0; k < (int)e[j].size(); ++k)
				if ((--cnt[e[j][k]]) == 0) {
					cnt[e[j][k]] = top;
					top = e[j][k];
				}
		}
	return 1;
}

int main() {

	int n,m,t;
	scanf("%d%d",&n,&m);
	t=m;
	for(int i=0;i<n;i++){
		for(int j=1;j<=m;j++){
			scanf("%d",&a[j]);
			p[j]=j;
		}
		sort(p+1,p+m+1,cmp);
		int j=1;
		while(j<=m&&a[p[j]]==-1) j++;
		for(t++;j<=m;t++){
			int k=j;
			while(k<=m&&a[p[k]]==a[p[j]]){
				e[t].push_back(p[k]);
				cnt[p[k]]++;
				e[p[k]].push_back(t+1);
				cnt[t+1]++;
				k++;
			}
			j=k;
		}
	}

	if(!TopoOrder(t)) printf("-1\n");
	else{
		for(int i=0;i<(int)ans.size();i++){
			if(ans[i]<=m) printf("%d ",ans[i]);
		}
	}

}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值