题目
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
思路一暴力循环
很简单,就是暴力循环所有可能交易的组合,然后求最大值
参考官方题解
class Solution {
public int maxProfit(int[] prices) {
return recursion(prices, 0);
}
public int recursion (int[] prices, int level) {
if (level >= prices.length) {
return 0;
}
int maxprofit = 0; //最大利润
for (int start = level; start < prices.length; start++) {
int max = 0;//第一天到第i天买卖和之后的最大利润
for (int i = start + 1; i < prices.length; i++) {
if(prices[start] < prices[i]) {
int temp = recursion(prices, i) + prices[i] - prices[start];
if (temp > max) max = temp;
}
}
if (max > maxprofit) maxprofit = max;
}
return maxprofit;
}
}
复杂度分析
时间复杂度:O(NN), 调用递归函数NN次
空间复杂度:O(N),递归的深度为N
思路二,贪心算法
因为题目不限制买卖的次数,相邻的俩天中,只要股价上升, 就买卖赚取差价,股价没有上升就不操作。这样最后的结果也是赚取的最大利润。
class Solution {
public int maxProfit(int[] prices) {
int total = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
total = total + prices[i] - prices[i - 1];
}
}
return total;
}
}
复杂度分析
时间复杂度:O(N),只需要遍历一次数组
空间复杂度:O(1)