LeetCode 63 不同路径二

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

思路 动态规划

和前面62题思路一样,就是需要加一个判断的条件是否有障碍物

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if (obstacleGrid == null || obstacleGrid.length == 0) {
            return 0;
        }
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] a = new int[m][n]; 
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            a[i][0] = 1;
        }
        for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
            a[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0) {
                    a[i][j] = a[i - 1][j] + a[i][j - 1];  //遍历计算每个格子路线,有障碍物的为0
                }
            }
        }
        return a[m-1][n-1]; //起点位置
    }
}

复杂度分析

时间复杂度:O(MN)
空间复杂度:O(M
N)

优化空间

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int n = obstacleGrid[0].length;
        int[] dp = new int[n];
        dp[0] = 1; //起点位置初始化,每次dp[0]都是1,除非遇到障碍物
        for (int[] row : obstacleGrid) {
            for (int i = 0; i < n; i++) {
                if (row[i] == 1) {
                    dp[i] == 0;
                } else if (i > 0){
                    dp[i] = dp[i] + dp[i - 1];
                }
                //遇到i = 0,且不是障碍物时,什么也不干,就是默认是dp[0] = 1;
            }
        }
        return dp[n-1];
    }
}

空间复杂度优化为O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值