题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
思路 动态规划
和前面62题思路一样,就是需要加一个判断的条件是否有障碍物
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] a = new int[m][n];
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
a[i][0] = 1;
}
for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
a[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 0) {
a[i][j] = a[i - 1][j] + a[i][j - 1]; //遍历计算每个格子路线,有障碍物的为0
}
}
}
return a[m-1][n-1]; //起点位置
}
}
复杂度分析
时间复杂度:O(MN)
空间复杂度:O(MN)
优化空间
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int n = obstacleGrid[0].length;
int[] dp = new int[n];
dp[0] = 1; //起点位置初始化,每次dp[0]都是1,除非遇到障碍物
for (int[] row : obstacleGrid) {
for (int i = 0; i < n; i++) {
if (row[i] == 1) {
dp[i] == 0;
} else if (i > 0){
dp[i] = dp[i] + dp[i - 1];
}
//遇到i = 0,且不是障碍物时,什么也不干,就是默认是dp[0] = 1;
}
}
return dp[n-1];
}
}
空间复杂度优化为O(N)