优化资源配置读后感

看了一篇关于优化资源配置的论文,写点笔记:


首先,该论文先提出自己的观点,提出了2维度,2个子问题的研究方法,通过扩展遗传算法

来优化,其他笔者所没有的。 然户通过分析   


1:多目标决策方向,没有相似度函数索引,  包括了  动态制造分配,蚁群优化,整合线性规划模型,

多目标优化选择,多目标优化方法。

提出了这几个方法的没有涉及到的未完整考虑各个方面的因素,包括权衡各个指标,相似度索引,

2:旧的GA: 包括了没有函数的索引匹配子任务,(相似度问题),单维度分析处理资源选择问题,

GA和爬山法的整合,但是多级表示方案,使得工程量大,效率低。

2维对应2个子问题,但是由交叉和变异的不完整和逐代后工程量变大,生成不可行的后代,

有很大的弊端


然后笔者提出的观点进行了验证,通过改进遗传算法,,交叉和变异,通过2维度和2个子问题的设计,改进

交叉和变异,使得后代优化,通过一个样例,工厂零件的加工处理,对次方法进行了一个

完整性的叙述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值