1.直接插入排序
经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中。
- 将第一个数和第二个数排序,然后构成一个有序序列
- 将第三个数插入进去,构成一个新的有序序列。
- 对第四个数、第五个数……直到最后一个数,重复第二步。
如何写写成代码:
- 首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用插入。
- 设定插入数和得到已经排好序列的最后一个数的位数。insertNum和j=i-1。
- 从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位。
- 将当前数放置到空着的位置,即j+1。
代码实现如下:
- public void insertSort(int[] a){
- int length=a.length;
- int insertNum;
- for(int i=1;i<length;i++){
- insertNum=a[i];
- int j=i-1;
- while(j>=0&&a[j]>insertNum){
- a[j+1]=a[j];
- j--;
- }
- a[j+1]=insertNum;
- }
- }
2.希尔排序
对于直接插入排序问题,数据量巨大时。
- 将数的个数设为n,取奇数k=n/2,将下标差值为k的书分为一组,构成有序序列。
- 再取k=k/2 ,将下标差值为k的书分为一组,构成有序序列。
- 重复第二步,直到k=1执行简单插入排序。
如何写成代码:
- 首先确定分的组数。
- 然后对组中元素进行插入排序。
- 然后将length/2,重复1,2步,直到length=0为止。
代码实现如下:
- public void sheelSort(int[] a){
- int d = a.length;
- while (d!=0) {
- d=d/2;
- for (int x = 0; x < d; x++) {
- for (int i = x + d; i < a.length; i += d) {
- int j = i - d;
- int temp = a[i];
- for (; j >= 0 && temp < a[j]; j -= d) {
- a[j + d] = a[j];
- }
- a[j + d] = temp;
- }
- }
- }
- }
3.简单选择排序
常用于取序列中最大最小的几个数时。
(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)
- 遍历整个序列,将最小的数放在最前面。
- 遍历剩下的序列,将最小的数放在最前面。
- 重复第二步,直到只剩下一个数。
如何写成代码:
- 首先确定循环次数,并且记住当前数字和当前位置。
- 将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。
- 比对完成后,将最小的值与第一个数的值交换。
- 重复2、3步。
代码实现如下:
- public void selectSort(int[] a) {
- int length = a.length;
- for (int i = 0; i < length; i++) {
- int key = a[i];
- int position=i;
- for (int j = i + 1; j < length; j++) {
- if (a[j] < key) {
- key = a[j];
- position = j;
- }
- }
- a[position]=a[i];
- a[i]=key;
- }
- }
4.堆排序
对简单选择排序的优化。
- 将序列构建成大顶堆。
- 将根节点与最后一个节点交换,然后断开最后一个节点。
- 重复第一、二步,直到所有节点断开。
代码实现如下:
- public void heapSort(int[] a){
- System.out.println("开始排序");
- int arrayLength=a.length;
-
- for(int i=0;i<arrayLength-1;i++){
-
-
- buildMaxHeap(a,arrayLength-1-i);
-
- swap(a,0,arrayLength-1-i);
- System.out.println(Arrays.toString(a));
- }
- }
- private void swap(int[] data, int i, int j) {
-
- int tmp=data[i];
- data[i]=data[j];
- data[j]=tmp;
- }
-
- private void buildMaxHeap(int[] data, int lastIndex) {
-
-
- for(int i=(lastIndex-1)/2;i>=0;i--){
-
- int k=i;
-
- while(k*2+1<=lastIndex){
-
- int biggerIndex=2*k+1;
-
- if(biggerIndex<lastIndex){
-
- if(data[biggerIndex]<data[biggerIndex+1]){
-
- biggerIndex++;
- }
- }
-
- if(data[k]<data[biggerIndex]){
-
- swap(data,k,biggerIndex);
-
- k=biggerIndex;
- }else{
- break;
- }
- }
- }
- }
5.冒泡排序
一般不用。
- 将序列中所有元素两两比较,将最大的放在最后面。
- 将剩余序列中所有元素两两比较,将最大的放在最后面。
- 重复第二步,直到只剩下一个数。
如何写成代码:
- 设置循环次数。
- 设置开始比较的位数,和结束的位数。
- 两两比较,将最小的放到前面去。
- 重复2、3步,直到循环次数完毕。
代码实现如下:
- public void bubbleSort(int[] a){
- int length=a.length;
- int temp;
- for(int i=0;i<a.length;i++){
- for(int j=0;j<a.length-i-1;j++){
- if(a[j]>a[j+1]){
- temp=a[j];
- a[j]=a[j+1];
- a[j+1]=temp;
- }
- }
- }
- }
6.快速排序
要求时间最快时。
- 选择第一个数为p,小于p的数放在左边,大于p的数放在右边。
- 递归的将p左边和右边的数都按照第一步进行,直到不能递归。
代码实现如下:
- public static void quickSort(int[] numbers, int start, int end) {
- if (start < end) {
- int base = numbers[start];
- int temp;
- int i = start, j = end;
- do {
- while ((numbers[i] < base) && (i < end))
- i++;
- while ((numbers[j] > base) && (j > start))
- j--;
- if (i <= j) {
- temp = numbers[i];
- numbers[i] = numbers[j];
- numbers[j] = temp;
- i++;
- j--;
- }
- } while (i <= j);
- if (start < j)
- quickSort(numbers, start, j);
- if (end > i)
- quickSort(numbers, i, end);
- }
- }
7.归并排序
速度仅次于快排,内存少的时候使用,可以进行并行计算的时候使用。
- 选择相邻两个数组成一个有序序列。
- 选择相邻的两个有序序列组成一个有序序列。
- 重复第二步,直到全部组成一个有序序列。
代码实现如下:
- public static void mergeSort(int[] numbers, int left, int right) {
- int t = 1;
- int size = right - left + 1;
- while (t < size) {
- int s = t;
- t = 2 * s;
- int i = left;
- while (i + (t - 1) < size) {
- merge(numbers, i, i + (s - 1), i + (t - 1));
- i += t;
- }
- if (i + (s - 1) < right)
- merge(numbers, i, i + (s - 1), right);
- }
- }
- private static void merge(int[] data, int p, int q, int r) {
- int[] B = new int[data.length];
- int s = p;
- int t = q + 1;
- int k = p;
- while (s <= q && t <= r) {
- if (data[s] <= data[t]) {
- B[k] = data[s];
- s++;
- } else {
- B[k] = data[t];
- t++;
- }
- k++;
- }
- if (s == q + 1)
- B[k++] = data[t++];
- else
- B[k++] = data[s++];
- for (int i = p; i <= r; i++)
- data[i] = B[i];
- }
8.基数排序
用于大量数,很长的数进行排序时。
- 将所有的数的个位数取出,按照个位数进行排序,构成一个序列。
- 将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。
代码实现如下:
- public void sort(int[] array) {
-
- int max = array[0];
- for (int i = 1; i < array.length; i++) {
- if (array[i] > max) {
- max = array[i];
- }
- }
- int time = 0;
-
- while (max > 0) {
- max /= 10;
- time++;
- }
-
- List<ArrayList> queue = new ArrayList<ArrayList>();
- for (int i = 0; i < 10; i++) {
- ArrayList<Integer> queue1 = new ArrayList<Integer>();
- queue.add(queue1);
- }
-
- for (int i = 0; i < time; i++) {
-
- for (int j = 0; j < array.length; j++) {
-
- int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
- ArrayList<Integer> queue2 = queue.get(x);
- queue2.add(array[j]);
- queue.set(x, queue2);
- }
- int count = 0;
-
- for (int k = 0; k < 10; k++) {
- while (queue.get(k).size() > 0) {
- ArrayList<Integer> queue3 = queue.get(k);
- array[count] = queue3.get(0);
- queue3.remove(0);
- count++;
- }
- }
- }
- }