一、题目描述
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
[
[1,2,8,9],
[2,4,9,12],
[4,7,10,13],
[6,8,11,15]
]
给定 target = 7,返回 true。
给定 target = 3,返回 false。
示例1
输入
7,[[1,2,8,9],[2,4,9,12],[4,7,10,13],[6,8,11,15]]
返回值
true
说明
存在7,返回true
二、思路分析
这道题可以用暴力算法,即是从一个二维数组中找一个特定数字的问题。但是这样的时间复杂度是比较高的,两层for循环,算法负责度有O(n^2)。因此,在寻找更快的、时间复杂度更小的算法。因为数组是排序好的,一般排序好的数组问题,要往二分法去想。
我们在做二分法分析时,首先要求的是数组要是有序的,而这道题,从左往右,从上往下都是有序的,所以应该采用二分法。
总所周知,一维数组的二分法的基本套路,找到首末位置的坐标,f、r,还要算出中间mid=f+(r-f)>>2,如果target值>a[mid],则在让f=mid,在(f,r)中找target的值。
但是二维数组却很难定下f、r、mid这三个值,本题,让r=a[0][col-1]的位置(col为二维数组的列数),如果target>a[0][col-1],则让target和a[1][col-1],比较。直到找到target。
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
int row = array.size();
int col = array[0].size()-1;
int r=0;
while(r<row&&col>=0){
if(target>array[r][col]){
r++;
}
else if(target==array[r][col]){
return true;
}
else
col--;
}
return false;
}
};