将keras的model.save()保存下来的 .model (.h5) 模型转换为tensorflow的pb模型

本文介绍了如何将使用Keras框架训练的.h5模型转换为TensorFlow的.pb模型,以便于在客户端部署。转换过程通过Python脚本h5_to_pb.py实现,旨在解决Keras模型在某些客户端不支持的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reference:https://www.jianshu.com/p/45e575555896

背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用的tensorflow的pb模型并使用tensorflow加载pb模型。

h5_to_pb.py

from keras.models import load_model
import tensorflow as tf
import os 
import os.path as osp
from keras import backend as K
#路径参数
input_path = 'input path'
weight_file = 'model.h5'
weight_file_path = osp.join(input_path,weight_file)
output_graph_name 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值