目录
增
1)新增商品:新增文档,建立索引
格式:
PUT /index/type/id
{
"json数据"
}
例子:
PUT /ecommerce/product/1
{
"name" : "gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索
删:
(5)删除商品:删除文档
DELETE /ecommerce/product/1
改:
一般对应到应用程序中,每次的执行流程基本是这样的:
(1)应用程序先发起一个get请求,获取到document,展示到前台界面,供用户查看和修改
(2)用户在前台界面修改数据,发送到后台
(3)后台代码,会将用户修改的数据在内存中进行执行,然后封装好修改后的全量数据
(4)然后发送PUT请求,到es中,进行全量替换
(5)es将老的document标记为deleted,然后重新创建一个新的document
(3)修改商品:两种
替换文档:
PUT /ecommerce/product/1
{
"name" : "jiaqiangban gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改(否则只会保留第二次输入的内容)
partial update:更新文档,只用输入需要更改的部分
post /index/type/id/_update
{
"doc": {
"要修改的少数几个field即可,不需要全量的数据"
}
}
partial update,操作起来很方便的操作,实际内部的原理是什么样子的,然后它的优点是
例子:
PUT /test_index/test_type/10
{
"test_field1": "test1",
"test_field2": "test2"
}
POST /test_index/test_type/10/_update
{
"doc": {
"test_field2": "updated test2"
}
}
查:
全查询+过滤器:
- 替换查询字符串
query
过滤查询中的match_all
查询,这是一个查询,只是匹配一切。 - 使用常数分数查询
格式:
curl -XPOST "http://localhost:9200/_search" -d'
{
"query": {
"filtered": {
"query": {
"match_all": { ##查询条件
}
},
"filter": {
"term": { "year": 1962 } ##过滤条件
}
}
}
}'
curl -XPOST "http://localhost:9200/_search" -d'
{
"query": {
"constant_score": {
"filter": {
"term": { "year": 1962 }
}
}
}
}'
(2)查询商品:检索文档
格式:
GET /index/type/id
例子:
GET /ecommerce/product/1
查询方式的分类:
1、query string search:query string search的由来,因为search参数都是以http请求的query string来附带的。适用于临时的在命令行使用一些工具,比如curl,快速的发出请求,来检索想要的信息;但是如果查询请求很复杂,是很难去构建的。在生产环境中,几乎很少使用query string search
例子:GET /ecommerce/product/_search?q=name:yagao&sort=price:desc
2、query DSL:DSL:Domain Specified Language,