记一次 OOM 查询过程

现象

监控系统发现服务挂掉, 登上机器  ps -ef|grep ** 发现进程还在,因为监控系统是通过心跳检测来监控服务的存活状态的,服务假死

排查过程

1、df、free、top 三连

磁盘空间正常、内存使用率正常、某个进程的CPU占用率达300%多

2、top -H-p pid

查看占用CPU最高的进程对应线程,得到线程ID tid

3、printf ‘%x’ tid

线程ID转为16进制

4、jstack pid | grep -C 5 tid

查看进程中占用CPU最高的线程,发现是GC线程

"GC task thread#0 (ParallelGC)" os_prio=0 tid=0x00007f181001d800 nid=0x31a7 runnable



"GC task thread#1 (ParallelGC)" os_prio=0 tid=0x00007f181001f800 nid=0x31a8 runnable



"GC task thread#2 (ParallelGC)" os_prio=0 tid=0x00007f1810021800 nid=0x31a9 runnable



"GC task thread#3 (ParallelGC)" os_prio=0 tid=0x00007f1810023000 nid=0x31aa runnable

5、jstat -gc pid 500

查下GC情况,发现几乎每秒发生一次FULL GC

6、jmap -dump:format=b,file=/tmp/**.dump pid

dump出jvm堆内存数据

7、通过mat(Eclipse Memory Analysis Tools)分析dump文件

导入dump文件分析后,发现有两大块数据异常,占用了整个堆内存的80%

第一块是下面109.8MB的这个,继续分析是 com.mysql.jdbc.JDBC4ResultSet 这个对象占用的,通过代码最终定位到问题,是一个定时任务批量处理数据时没有分页处理,一次查出了80W+的数据,然后遍历处理,导致GC时内存不能得到释放,这里改为分页处理后,问题解决

第二块是 com.alibaba.druid.stat.JdbcDataSourceStat 这个对象占用了210.3MB。从名字可以看出这个类是druid用做统计的,他会记录最近n(默认1000)条的SQL执行情况, sqlStatMap 这个Map是记录了最近1000条的SQL的执行情况,看看代码:

sqlStatMap = new LinkedHashMap<String, JdbcSqlStat>(16, 0.75f, false) {

    protected boolean removeEldestEntry(Map.Entry<String, JdbcSqlStat> eldest) {

        boolean remove = (size() > maxSqlSize);

        if (remove) {

            JdbcSqlStat sqlStat = eldest.getValue();

            if (sqlStat.getRunningCount() > 0 || sqlStat.getExecuteCount() > 0) {

            skipSqlCount.incrementAndGet();

            }

        }

        return remove;

    }

};

但是从图里可以看出这里其实只记录了203条SQL的执行情况,却占用了200多MB,理应没有这么大的,sqlStatMap的key其实就是我们执行的SQL,继续看sqlStatMap里面的值,发现了几个特别大的key,SQL内容是这样的 update t_table set a=b where id in (id1,id2,id3....) ,这条SQL的查询条件in里面包含了几十万个id,占用空间10多MB,所以导致了sqlStatMap占用空间大

所以这里的解决办法是:

1、先关闭druid的统计功能(我们并没有用到这个功能),释放 JdbcDataSourceStat 的内存占用;

<!-- 配置 p:filters="stat" 即开启druid的统计功能 -->

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource"

p:filters="stat"

p:connectionProperties="config.decrypt=true"/>

2、优化业务处理,采用分页的方式处理

总结

  • 大量数据一定要用分页的方式处理

  • 如非必要可以关闭druid的数据统计功能,可以节省大量的内存空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值