自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

石榴姐yyds

数据开发与数据挖掘

  • 博客(676)
  • 资源 (43)
  • 收藏
  • 关注

原创 SQL面试提问:如何找出每月GMV环比下降超20%的城市?

要找出每个城市每月GMV环比下降超过20%的情况,可以按照以下步骤进行:首先,按城市和月份聚合GMV数据,使用date_format提取年月并按城市分组求和。接着,通过窗口函数LAG获取同一城市上月的GMV数据。然后,计算环比变化率,并筛选出下降超过20%的记录。在处理过程中,需注意日期格式的兼容性、除零错误以及月份缺失问题。优化查询性能的方法包括增加分区字段或预聚合数据。此外,还需考虑如何处理上月GMV为0的情况,以及如何确保跨年排序的正确性。最终结果可用于业务改进,如排查异常原因并建立预警机制。

2025-05-23 09:00:00 9

原创 如何提升自己的职场思维?| 10个模型助你成为高效能人士

本文介绍了10个经过验证的思维模型,旨在帮助职场人士提升学习力、决策力、执行力和系统性思维。首先,通过“学习金字塔”和“费曼技巧”提升学习效率;其次,利用“六顶思考帽”和“10/10/10法则”优化决策过程;再次,通过“TOPIC模型”和“POA行动力”强化团队执行力;然后,运用“系统思维”和“SWOT分析”洞察复杂问题;最后,通过“刻意练习”和“KPT复盘法”实现持续精进。这些模型为职场人士提供了系统性的思考框架,帮助他们在复杂环境中游刃有余,实现职业成长与突破。

2025-05-22 10:00:00 2270

原创 SQL高频面试题:如何查询用户的累计消费金额及VIP等级?

在SQL面试中,查询用户的累计消费金额及VIP等级是一个常见问题。首先,需要从订单信息表中按用户和日期聚合每日消费金额,然后使用窗口函数按日期顺序累加金额,得到每个用户在每个下单日期的累计消费金额。接着,通过CASE WHEN语句根据累计金额动态计算VIP等级,如普通会员、青铜会员等。核心SQL代码包括预聚合、窗口函数和条件判断。面试中可能涉及的性能优化、数据清洗、数据倾斜处理等问题,可以通过分区表、数据预处理、Salting技术等方法解决。此外,设计灵活的VIP规则配置表也是加分点。总结时,应强调技术选型

2025-05-22 09:00:00 40

原创 SQL面试提问|如何统计每个用户的「最爱外卖品」?

本文详细介绍了如何使用HiveSQL统计每个用户购买次数最多的外卖品。首先,通过GROUP BY对用户和产品进行分组统计,计算每个用户购买每种产品的次数。接着,使用RANK()窗口函数对每个用户的购买次数进行排序,确保并列第一的记录都能被保留。最后,筛选出每个用户购买次数最多的产品。文章还强调了使用RANK()而非ROW_NUMBER()的原因,并提供了性能优化建议,如使用Hive分区表和预聚合。此外,文章还讨论了边界情况的处理,如用户只购买一种商品或多个商品购买次数相同的情况。最后,文章总结了面试中应对此

2025-05-21 10:00:00 20

原创 SQL面试提问:如何找出⽀付⾦额在前 20% 的用户?

本文详细解析了如何在HiveSQL中使用分位数函数和窗口函数来找出支付金额在前20%的用户。文章首先介绍了两种主要方法:使用PERCENT_RANK()窗口函数和NTILE(5)分桶技术。PERCENT_RANK()通过计算每个用户的支付金额在总支付金额中的百分比排名,筛选出排名前20%的用户;而NTILE(5)则将用户均匀分成五等份,第一份即为支付金额最高的前20%用户。文章还探讨了如何处理并列情况、用户数量不能被5整除时的分配方式,以及如何找出“中间60%”用户。最后,文章总结了两种方法的优缺点,并强调

2025-05-21 08:30:00 342

原创 解码数据语言:如何优雅的进行数仓字典建设?

文章探讨了企业构建“数据词典”的重要性及其方法论。数据词典作为业务与技术的通用语言库,能够统一数据语义,消除歧义,支撑数据治理,并加速团队协作。文章详细介绍了词根的概念及其核心价值,词根是数据语义的最小单元,通过词根词库可以实现技术字段与业务术语的统一。此外,文章还阐述了数据字典的核心维度,包括词根词库的本质、分层分类、命名规范及冲突解决机制。建设方法论部分,提出了业务调研与术语收编、标准化处理四步法及自动化工具链增强等步骤。运营推广方面,建议通过分层培训体系、激励机制和动态迭代机制实现长效治理。最后,文章

2025-05-20 17:41:54 1025

原创 企业智慧业务中台规划建设与应用全景解析

《智慧业务中台规划建设与应用总体方案》旨在解决企业流程复杂、信息不畅、系统重复开发等问题,通过构建智慧化集中支撑体系,实现全局掌控、智能决策和快速响应。方案提出以互联网技术为基础,数据驱动为核心,打造运营决策集中化、前端营销敏捷化、业务支撑集中化的一体化体系。建设目标包括提供全流程支撑、智能化业务管理、集中化订单处理及闭环风险管控。总体建设思路强调引入互联网技术,构建前台、中台、后台的支撑体系,贯通营销、生产、决策全流程。业务中台设计注重共性能力抽象和三大支撑体系(智慧决策、敏捷营销、生产集中),数据中台设

2025-05-19 16:41:57 947

原创 流量曝光归因SQL优化实战:如何将曝光事件精准关联到最近一次启动?

随着移动互联网进入存量竞争时代,精细化运营成为企业核心战略,用户行为归因分析尤为关键。启动归因作为用户生命周期分析的起点,直接影响渠道评估、广告投放优化和产品迭代策略。本文通过两种典型的归因实现方案,剖析大数据场景下的核心解决思路。方案1基于ROW_NUMBER的关联归因,通过笛卡尔积和窗口函数筛选最近启动记录,但存在笛卡尔积风险和排序性能消耗问题。方案2基于LAST_VALUE的融合归因,通过合并启动与曝光事件流,单次扫描完成计算,复杂度更低,适用于数据量大、时效要求高的场景。未来可探索Flink状态计算

2025-05-19 08:30:00 46

原创 如何为大模型编写优雅且高效的提示词?

文章摘要:本文详细介绍了如何设计有效的提示词以优化AI模型的输出。首先,明确核心目标,使用具体任务替代抽象描述,并定义任务类型和输出格式。其次,采用结构化提示词设计,包括角色设定、背景信息、核心任务和输出约束。接着,探讨了语言技巧与原则,如使用主动语态和分层指令设计。进阶策略包括思维链引导和少样本学习。迭代优化方法涉及A/B测试和反馈循环机制。最后,通过示例对比和注意事项,强调了伦理边界和版权意识的重要性。文章还提供了通用模板,建议建立个人提示词库并持续迭代优化。

2025-05-16 14:24:04 933

原创 大模型在数据分析领域的研究综述

大模型(LLMs)在业务指标拆解中的应用日益广泛,尤其在金融、零售和制造业等领域展现了显著潜力。在金融行业,大模型通过增强模式识别能力,支持高频交易和欺诈检测,提升了预测准确性和风险管理效率。零售行业中,大模型驱动的动态定价和库存管理系统帮助企业实现销售增长和利润率提升。制造业则通过大模型优化质量控制,减少废品率并提高生产效率。然而,大模型的应用仍面临透明度不足、数据隐私和技术门槛等挑战。未来,企业需加强数据治理、提升模型可解释性,并探索跨行业协作,以充分发挥大模型在业务指标拆解中的潜力,推动智能化转型。

2025-05-16 10:17:25 1171

原创 经典问题争议:数仓分层建设中,DWD、DWS、ADS哪一层最难?

在数据仓库分层建设中,DWD(明细层)、DWS(汇总层)、ADS(应用层)的难度因业务场景、团队能力和系统复杂度而异,没有绝对的“最难”。但从业务耦合度、技术复杂度和长期维护成本等维度综合来看,DWD层通常是最核心、最复杂的部分。DWD层负责数据清洗、标准化和原子指标计算,构建面向业务过程的原子表,为上层提供高质量、可复用的明细数据。其难点在于对业务理解的深度要求、数据质量治理的复杂性、ETL开发与维护的高成本以及长期维护的压力。DWS层则基于DWD层数据,按主题构建轻度聚合表,提升查询效率,难点在于维度建

2025-05-15 09:00:00 42

原创 CIO必修课:如何让老板为数据治理买单?

一场失败的提案“王总,我们需要启动数据治理项目,否则系统会越来越乱……”“先等等,这项目要投200万?能带来多少收入?”CIO张明无奈离场,老板的质疑让他哑口无言。痛点共鸣:70%的数据治理项目因“无法证明业务价值”被毙掉!核心结论不谈技术,只谈钱——用老板的思维说服老板。

2025-05-14 09:00:00 395

原创 Dify大模型参数调节技术指南:从原理到实践

本文深入探讨了大语言模型(LLM)在文本生成和对话系统等应用中的关键参数调节策略。文章首先详细解析了温度(Temperature)、TopP、TopK等核心参数的作用机制及其在不同场景下的配置建议,如知识密集型、确定性、创意生成和对话系统场景。接着,提供了参数组合的黄金公式和调整小技巧,帮助开发者在保证生成质量的同时,实现多样性的精准控制。此外,文章还介绍了调试流程、常见问题解决方案及最佳实践建议,强调了参数调节的艺术与科学结合,并建议开发者建立参数实验记录制度,通过A/B测试不断优化配置方案。最后,文章指

2025-05-14 08:30:00 806

原创 球球 vs 懂车帝数仓岗位:数据资产沉淀主要是指DWS和ADS层的表吗?

数据资产的沉淀在企业数据仓库建设中至关重要,但常被误解为仅涉及DWS(数据仓库汇总层)和ADS(应用数据服务层)的表。数据资产应具备可控制、可量化、可复用、可管理四大特征,其沉淀需覆盖从ODS(原始数据层)到ADS的全链路。ODS层虽为原始数据,但通过治理可转化为资产;DWD层作为清洗后的原子数据,是高质量数据源的基础;DWS和ADS层则通过轻度汇总和服务化,直接驱动业务决策。反方观点认为,仅聚焦DWS和ADS层会忽视基础数据的基石作用和原始数据的潜在价值,导致全链路治理缺位。因此,数据资产沉淀应兼顾价值显

2025-05-13 09:00:00 49

原创 数据资产沉淀:不仅是DWS与ADS,揭秘企业数据价值化的全链路法则

本文探讨了数据资产沉淀的完整定义与技术架构,指出数据资产不仅仅是DWS/ADS层的表,而是全链路可复用的数据资源。文章通过“四层九维”模型详细剖析了数据分层架构和治理维度,并提出了跳出DWS/ADS陷阱的三个关键动作:夯实DWD层、建立数据资产目录、以用促治。此外,文章还展望了从“分层治理”到“数据Mesh”的未来演进方向,强调数据资产沉淀是一场需要全员参与的长期马拉松。通过系统化的治理和架构设计,数据资产可以从“成本负担”进化为“战略资产”。

2025-05-13 08:30:00 1520

原创 提示工程实战指南:Google白皮书关键内容一文讲清

Google于2025年2月发布的《Prompt Engineering》白皮书,由Lee Boonstra主编,详细介绍了提示工程的核心技术、实践方法及挑战应对策略。文档涵盖了提示工程的基础理论、主流提示技术(如零样本/少样本提示、思维链、自洽性、思维树等)、输出参数配置(温度、Top-K、Top-P等)、最佳实践及生成式AI的局限性分析。文档强调通过结构化迭代、自动化工具与跨团队协作提升提示工程效率,并提供了多场景应用案例。提示工程的核心在于简洁明确的指令设计、参数优化及技术组合应用,如零样本与少样本提

2025-05-12 16:37:44 715

原创 SQL 筛选优化| LEFT SEMI JOIN 与 LEFT ANTI JOIN 高效数据筛选的利器

LEFTSEMIJOIN和LEFTANTIJOIN是SQL中两种特殊的非标准JOIN类型,主要用于大数据处理引擎如Hive和SparkSQL。LEFTSEMIJOIN用于返回左表中在右表中存在匹配的记录,而LEFTANTIJOIN则返回左表中在右表中没有匹配的记录。这两种连接类型都不返回右表的字段,并且具有去重特性,即右表的多条匹配记录不会导致左表记录重复。它们在大数据场景下具有减少数据扫描量、避免数据膨胀和加速查询的优势。LEFTSEMIJOIN适用于筛选有订单的用户等场景,而LEFTANTIJOIN适用

2025-05-12 08:30:00 54

原创 低代码时代的技术抉择:n8n 和 Dify 到底怎么选?

场景推荐工具构建自动化流程、系统集成✅ n8n开发AI应用、智能助手✅ DifyAI+自动化组合方案✅ n8n + Dify 协同项目n8nDify定位自动化流程编排AI原生应用开发强项系统集成、API调度LLM应用、提示工程技术栈推荐指数(自动化方向)⭐⭐⭐⭐⭐⭐⭐推荐指数(AI方向)⭐⭐⭐⭐⭐⭐⭐。

2025-05-09 17:11:56 1414

原创 数据治理路径之辩:从“先治后用”到“边用边治”,企业如何选择最优路径?

数据治理是企业在数智化建设中的核心挑战,主要涉及三种时序策略:先治理后使用、先用后治理和边用边治。先治理后使用强调在数据应用前建立完整的治理框架,适合高合规要求的行业,但可能响应滞后。先用后治理则优先释放数据价值,适合快速变化的业务环境,但可能累积数据质量问题。边用边治寻求动态平衡,通过持续改进实现治理与应用的同步迭代,适合复杂数据环境。技术选型决策矩阵和实施方法论提供了具体的操作指南,建议根据组织特性和业务需求选择适配方案,并通过渐进式演进路径实现治理与业务的共生演进。

2025-05-09 08:30:00 154

原创 王炸vs某互联网公司:数仓中,什么情况下需要进行数据回溯?需要注意什么?

我们更希望候选人能系统性思考问题,比如:回溯场景需分数据质量、规则变更、合规需求等类型;技术上需结合分区、增量更新、快照隔离;协作上要通知下游并清理缓存;成本上需权衡是否值得回溯老旧数据。你今天的回答偏基础,建议加强工程实践和全局视角。

2025-05-08 09:00:00 278

原创 制造模式转型下资产管理数字化转型顶层设计方案

通过IT技术与OT技术深度融合,实现设备运维海量数据的实时采集,建立设备健康值模型,利用工 业互联网平台“大脑”的数据组织、分析能力,根据设备健康状态实施不同的检修策略,通过数据驱动 检修业务的合理化、高效化,实现活起来的PDCA循环。该厂商拥有5条生产线,年产能300万平方米,面临设备利用率低(OEE 60%)、备件库存高(周转率1.2)等问题。,例如某汽车零部件厂商通过数字化改造后,设备故障率下降40%,能耗降低15%。:通过数据反馈不断优化算法模型,实现从“工具应用”到“智能决策”的跃迁。

2025-05-08 08:30:00 784

原创 HiveSQL 专家级技巧:如何将增量表的变更优雅的合并到全量表中?

优先取增量表字段值(若存在),否则保留全量表原值。

2025-05-07 09:00:00 70

原创 数据治理体系建设方案

数据治理是整合IT与业务部门的战略体系,通过流程、策略、标准和组织的协同,确保数据的。

2025-05-07 08:30:00 1353

原创 闭坑记录:Hive中ROW_NUMBER()排序不稳定性分析与解决方案

这是消除Hive窗口函数计算结果不确定性的唯一根本方法。通过业务主键、时间戳、UUID等字段补充排序条件,可彻底规避分布式计算中的顺序风险。

2025-05-06 09:00:00 71

原创 SQL进阶技巧 | 如何取多个表中某一字段不为空且时间最新的值?

name王二2222022张三1232019李四8642021。

2025-05-06 08:15:00 1304

原创 SQL进阶技巧:高效处理版本号排序与序号生成

字符串处理与类型转换 • 灵活使用substrsplit分解复杂字符串。• 通过CAST确保数值比较(避免字符串按字典序排序的错误)。窗口函数的高级用法 •解决并列排名问题,生成连续序号。• 结合可实现分组排序(如按产品线独立排名)。默认值处理 • 使用COALESCE或NVL填充缺失字段,避免NULL值干扰排序。动态调整序号起点 • 通过-1+1等操作调整序号范围,适应业务需求。

2025-04-29 08:30:00 841

原创 李荣浩vs某游戏公司:数仓建设中,如果用户表频繁更新,像事实表一样细长,怎么解决?

问题本质:维度表高频更新是模型设计未能匹配业务动态性的结果,需通过数据域重构解决。阿里经验提炼:坚持“维度静态化、状态事实化”原则,以离线批处理支撑动态属性的高效管理。关键结论高频更新属性必须事实化:避免维度表承担动态数据写入压力。离线批处理是核心手段:通过每日快照平衡存储与查询性能。最佳实践属性分类:设计阶段明确区分静态属性与动态属性。自动化运维:通过调度工具(如Airflow)管理快照生成任务。监控告警:跟踪事实表的数据增长速率和快照任务执行时长。

2025-04-28 16:10:03 57

原创 增量抽取的场景下,周期快照表最新分区的数据是如何生成?

数据表:用户账户余额表(更新频率:源系统每日通过增量方式推送变更(增、删、改)目标表:每日生成全量快照分区,记录当天最终账户状态查询需求:支持按分区快速查询历史任意日期的账户余额通过本文提出的全量覆盖与ACID事务两种方案,可在Hive环境下高效生成周期快照表。实际生产中需根据集群版本、数据规模、实时性要求综合选择策略。未来随着Hive 3.x的普及和Iceberg/Hudi等表格式的集成,事务型快照表的管理将更加便捷。建议在架构设计时预留扩展能力,逐步向实时数仓演进。附录。

2025-04-28 14:22:13 744

原创 面试提问:你设计的模型是通用的吗?如何量化?| 通用模型 vs 自定义模型

数据仓库建设本质是在不确定中寻找确定性的过程。建议技术团队:建立模型健康度看板:监控指标包括需求命中率、重构频率、存储成本/查询量比设计灰度升级机制:新模型先在5%流量验证,通过A/B测试对比效果培养"标准化优先"文化:强制要求所有定制开发必须证明其无法被现有模型覆盖最终,优秀的数仓架构师应像围棋高手:在标准定式与妙手偶得间找到最佳平衡点。

2025-04-27 09:00:00 41

原创 「数仓的哲与思」:一场数据工程的思维盛宴与实战精要

如《分主题预计算》案例所示:单个业务域的预计算优化是局部理性,但多主题的无限衍生将导致存储成本超线性增长——这恰似哈耶克“自发秩序”理论在数据架构中的映射。”(某案例中,将延迟从5分钟降至5秒,并未改变运营策略,反浪费百万资源)。:《维度退化》系列揭示了反范式设计的深层逻辑——“存储冗余”本质是用空间换时间,但何时退化、退化到何种程度,需追踪到“业务查询的时空分布规律”。:康德“二律背反”的现代演绎——唯有建立“先验规范+自治空间”的弹性架构(如指标字典+动态视图),才能实现“规范下的自由”。

2025-04-26 09:00:00 1159

原创 DeepSeek 赋能全流程数据治理:构建智能化数据价值链

DeepSeek为代表的大模型技术,通过。

2025-04-25 09:00:00 1606

原创 妹爷vs快手数仓:DWS层构建好后,新来了一个需求,需要添加某个维度字段,你是怎么考虑和设计的?

DWS层的设计本质是在稳定性与灵活性间寻找平衡。最小化侵入:优先通过逻辑层解耦(视图/外键化)按需物化:高频维度预计算,长尾维度动态关联自动化兜底:用数据质量监控+元数据治理降低风险业务驱动演进:避免技术理想化设计,贴合实际查询模式最终,优秀的数仓架构应像乐高积木一样——每个模块可独立替换,但整体始终稳固可靠。

2025-04-25 08:30:00 70

原创 Dify vs RAGFlow:如何选择适合你的RAG与低代码AI平台?

随着大模型技术在企业场景的落地加速,开发者常面临工具选型难题:是否应该选择低代码平台快速搭建AI应用,还是采用垂直工具实现专业级文档处理?本文聚焦两款热门工具——Dify与RAGFlow,从技术架构、功能特性到应用场景进行全方位对比,为开发者提供选型决策依据。一、工具定位与核心差异1.1 Dify:低代码通用AI应用工厂定位:面向非技术用户的AI应用开发平台,支持快速构建对话机器人、内容生成、数据分析等场景。核心优势:• 低代码/无代码交互:通过可视化界面拖拽编排工作流,无需编码即可调用大模型能力。

2025-04-25 08:00:00 1071

原创 大语言模型生成控制参数详解:温度、Top-K与Top-P

温度、Top-K和Top-P的灵活组合,为LLM生成结果的可控性提供了多层次解决方案。开发者需深入理解各参数的数学本质,结合实际场景需求,通过系统化实验找到最佳配置。随着自适应参数调整技术的发展,未来或将实现更智能的上下文感知生成策略。

2025-04-23 09:00:00 1094

原创 智能体应用现状、挑战及发展路径综述

智能体(AI Agent)作为人工智能技术的重要载体,正逐步渗透至生产与生活的各个领域,成为推动产业升级和社会变革的核心驱动力。中国电子信息产业发展研究院发布的《智能体应用现状挑战及建议》报告系统梳理了智能体的技术框架、发展现状、全球动向及未来挑战,并提出了针对性的发展建议。本文基于该报告内容,结合学术视角,从技术特征、产业生态、区域策略、瓶颈问题及优化路径等方面展开综述,以期为智能体技术的深化研究与应用提供参考。

2025-04-23 08:15:00 1079

原创 面试提问:数仓里面指标计算的正确性如何验证,有好的方法吗?

按“数据输入→处理→业务→输出→监控→流程”分层展开,体现系统性。

2025-04-22 09:00:00 268

原创 SQL 中 GROUPING SETS 结合多个 COUNT(DISTINCT) 的数据膨胀问题与优化实践

在中,数据膨胀指中间计算结果(如哈希表、临时数据)因分组组合和去重操作的叠加效应,导致数据量远超原始输入的现象。原始数据量:1 亿条订单记录。膨胀后中间数据量:可能达到数十亿条。在 SQL 中使用结合多个时,数据膨胀问题的本质是组合爆炸与去重成本叠加的共同作用。通过预聚合、分步计算或近似计数等方案,可有效缓解性能瓶颈。实际场景中需结合数据规模、精确性要求和计算资源综合权衡,选择最优策略。

2025-04-22 09:00:00 195

原创 猪小明vs飞猪数据团队:数仓中既然有了主题域,为什么还要划分数据域?

简要说明主题域和数据域的概念。

2025-04-21 09:00:00 248

原创 腾讯云-DeepSeek+企业知识库:大模型员工助手,助力企业人效提升和业务增长

核心内容概述报告围绕腾讯云的DeepSeek+企业知识库解决方案,展示了如何通过大模型技术(如RAG、WorkFlow、Agent模式)构建智能员工助手,助力企业提升人效、优化业务流程并实现业务增长。重点覆盖知识管理、复杂任务处理、多模态数据解析等场景,结合实际客户案例验证产品价值。产品核心功能与模式三大应用模式标准模式(RAG):快速部署知识问答系统,适用于严肃问答场景(如企业规章制度查询)。工作流模式:通过可视化拖拽编排复杂业务流程(如保险建议书生成),支持零代码开发。Agent模式。

2025-04-21 08:00:00 1178

原创 数仓多源异构数据整合策略:融合与分离的实践指南

面对多源异构数据整合的复杂挑战,企业需采取"分而治之,合而为一"的策略。通过建立清晰的决策框架、设计灵活的技术方案、实施严格的质量控制,最终实现数据资产的全局可管、可控、可用。未来随着Data Mesh等新范式的普及,数据治理将进入更智能、更自治的新阶段。

2025-04-20 08:30:00 1162

吴师兄学算法Leetcode精讲200题.pdf

吴师兄学算法Leetcode精讲200题.pdf

2025-05-23

夸克网盘自动签到脚本-支持多账号

功能简介: 支持多账号签到(通过 COOKIE 环境变量配置) 支持签到前状态查询、未签自动补签 查询网盘总容量、签到容量、连签进度 支持 Server酱一键推送签到结果到微信 出错信息、接口异常均会捕获并提示 使用方法: 抓取签到参数,手机打开抓包工具(如 HttpCanary、Stream、Reqable等) 1.打开夸克APP → 进入签到页 2.查找 https://drive-m.quark.cn/1/clouddrive/capacity/growth/info 的请求 3.提取请求中的以下参数:kps=xxxx;sign=xxxx;vcode=xxxx 4.修改代码内的 os.environ['COOKIE'] = ... 替换为你的参数 5.运行脚本即可 6.多个账号使用$进行分割

2025-05-23

### 2025工业4.0状况报告:八大新兴技术

内容概要:本文档《2025工业4.0状况报告:八大新兴技术》由Kearney撰写,深入探讨了工业4.0时代下八项关键技术(人工智能、先进机器人、3D打印、工业物联网、数字孪生、云计算与边缘计算、AR/VR/可穿戴设备、5G)的发展现状与未来趋势。这些技术正在通过自动化流程、连接设备和推动创新来革新制造业。报告指出,工业4.0技术的应用能够显著提升产品质量、速度和效率,减少运营资本,提高员工技能和客户服务水平,增强企业应对危机的韧性和敏捷性,以及实现可持续发展和减少浪费。具体案例包括通过预测性维护降低意外停机时间、利用3D打印进行快速原型设计、借助数字孪生优化生产流程等。; 适合人群:制造业相关企业的决策者、技术负责人以及对工业4.0感兴趣的各界人士。; 使用场景及目标:①了解工业4.0各关键技术的具体应用场景和发展潜力;②评估自身企业在数字化转型过程中面临的挑战并制定相应的策略;③借鉴成功案例,探索如何利用新技术提升竞争力和创新能力。; 其他说明:报告强调了企业在实施这些先进技术时可能遇到的问题,如高成本、复杂IT基础设施、安全漏洞等,并提供了相应的解决方案建议。同时,报告还指出了当前劳动力短缺和技术人才缺口的问题,呼吁加强培训和教育以满足未来发展的需求。

2025-05-22

【数据资产管理领域】AI赋能数据资产管理革新:多领域探索实践与未来展望

内容概要:本文探讨了AI赋能数据资产管理的革新及其在数据标准等多领域的探索实践。首先强调了数据资产在企业战略中的核心价值,特别是在金融银行业面临的挑战与机遇。接着介绍了XX银行数据资产管理的历程,包括建立数据管控体系、数据治理架构和平台,以及确立企业级数据标准体系。文章还详细阐述了数据质量管理机制、数据安全策略及管理审计,并指出了数据资产管理的挑战与痛点。最后,介绍了AI在数据资产管理中的具体应用,如智能推荐数据标准、内嵌研发设计控增量、智能数据清洗与整合、智能分类分级模型等,并展望了未来AI在数据资产管理中的长期战略价值和发展方向。 适合人群:从事数据管理、数据分析、金融科技等相关工作的专业人士,特别是关注数据资产管理的企业管理人员和技术人员。 使用场景及目标:①理解数据资产在企业战略中的重要性;②掌握金融银行业数据管理的挑战与解决方案;③学习如何构建和优化数据治理架构与平台;④了解AI在数据资产管理中的应用实例及未来发展趋势。 其他说明:本文内容丰富,涵盖了数据资产管理的多个方面,尤其强调了AI技术的应用前景。读者可以通过本文深入了解数据资产管理的现状与未来发展方向,并借鉴其中的成功经验和实践案例。

2025-05-22

### 某大学核心机房建设项目技术方案总结

内容概要:本文档为某大学核心机房建设项目的技术方案,详细描述了项目现状分析、建设目标、设计原则、设备选型及技术要求、施工工艺难点解决方案、质量管理体系及保证措施、售后服务及维保承诺等内容。项目要求在90天内完成,涵盖机房布局、机柜及封闭通道建设、环境配套建设、接地系统建设、供配电系统建设、综合布线系统建设等多个方面。设计遵循多项国家标准和行业规范,确保系统的稳定性、安全性、实用性和灵活性。文档还提供了详细的施工进度计划、质量检查流程、标签标记方案、售后服务及人员培训计划。 适合人群:具备一定计算机机房建设和维护经验的技术人员、项目管理人员、相关领域的工程师及高校信息化管理人员。 使用场景及目标:①为机房建设提供详尽的技术指导,确保项目按期高质量完成;②确保机房系统的稳定性、安全性及高效运行;③为后续系统维护和扩展提供参考依据;④通过人员培训提高机房管理人员的技术水平和服务能力。 其他说明:文档中包含大量的技术细节和标准要求,建议读者在阅读时结合具体施工场景进行理解和实践。此外,文档还提供了详细的售后服务和维保承诺,确保项目在建设完成后能够长期稳定运行。

2025-05-22

### 文章总结:《2025企业智能化转型2.0时代指南.pdf》

内容概要:本文详细探讨了企业在2025年智能化转型2.0时代的背景、方法论、挑战与机遇。文章指出,随着AI技术的飞速发展,企业智能化转型已成为提升运营效率、战略价值和社会责任的重要手段。文中介绍了智能化转型框架和成熟度模型,强调了混合AI数字底座、智能业务运营、组织与文化变革的重要性。此外,还分析了不同行业在智能化转型中的表现,如金融、流通、专业服务、医疗卫生等行业的独特挑战与优势。最后,通过多个成功案例,如沃太能源、重庆市妇幼保健院、伊利集团等,展示了智能化转型的

2025-05-22

【人工智能领域】DeepSeek多场景应用指南:从基础入门到高级优化技术详解DeepSeek这一先进

内容概要:本文详细介绍了DeepSeek这一先进的人工智能工具,涵盖了其发展历程、核心技术优势、应用场景以及如何优化与DeepSeek的交互。文章首先回顾了人工智能从早期的简单模型到如今的大规模预训练模型的发展历程,特别强调了2018年以来的重大突破。接着,文章对比了DeepSeek与其他AI模型(如GPT系列)的不同之处,指出DeepSeek在中文理解、专业领域应用和自我进化机制上的显著优化。此外,文中还详细描述了DeepSeek的具体应用场景,包括但不限于辅助学习、决策分析、智能助手、文献检索等。最后,文章提供了与DeepSeek有效互动的策略,如优化提示词、利用结构化提示框架、进行任务拆解等,并提醒用户理性看待AI的能力边界。 适合人群:对人工智能感兴趣的技术人员、科研人员、学生、企业管理者及职场人士。 使用场景及目标:①辅助学习,帮助学生提高学习效率;②辅助决策分析,为企业管理者提供数据分析和市场洞察;③作为智能助手,帮助职场人士撰写报告、整理资料等;④加速科研人员筛选有价值文献信息,处理实验数据;⑤通过优化提示词和任务拆解,让用户获得更高质量的回答。 其他说明:尽管DeepSeek功能强大,但在涉及健康、法律、财务等重要领域决策时,用户应谨慎对待其输出内容,不可完全依赖。同时,为保护个人隐私,避免输入敏感个人信息。文章还提到,通过上传私有库数据,可以进一步提高DeepSeek的回答精准度和个性化水平。

2025-05-22

Dify AI应用:实时查询数据库及可视化图表呈现.yml

Dify AI应用:实时查询数据库及可视化图表呈现.yml

2025-05-21

品牌营销基于ChatGPT的74个营销场景提问模板:从信息搜集到内容生成的全流程指南

内容概要:本文档《AI提问的74个模板》提供了24个品牌营销工作场景下的74个提问模板,旨在帮助用户利用ChatGPT进行高效的营销活动。每个场景均包含详细的提问步骤、模板、案例展示和关键词,涵盖了从信息搜集、剧本/广告脚本写作、内容分发到社群新闻资讯生成等多个方面。此外,文档还涉及如何通过ChatGPT优化销售话术、生成定制化解决方案、客户服务话术、数据分析报告、项目管理和团队绩效管理等内容,以及如何用Ch

2025-05-20

【DeepSeek实操指南】公文写作与材料处理自动化:涵盖口述稿转化、政策对比及数据可视化等应用场景

内容概要:本文档《DeepSeek写材料实操指南.pdf》详细介绍了利用DeepSeek工具进行多种公文写作的实操方法。涵盖从口头发言材料的快速形成、多个文件的交叉对比分析、竞聘材料的动态升级到

2025-05-20

PPT知识图谱与大模型融合实践研究.pptx

【PPT】知识图谱与大模型融合实践研究.pptx

2025-05-20

【人工智能领域】麦肯锡2025年重点报告:AI如何重塑组织架构与价值创造-大型企业引领通用AI部署与风险管理

内容概要:本文由麦肯锡发布,探讨了人工智能(AI)特别是生成式AI(gen AI)如何重塑组织架构及创造价值。研究表明,企业正在通过重新设计工作流程、提升治理水平和应对更多与gen AI相关的风险来捕捉AI的价值。CEO对AI治理的监督与工作流的重新设计是取得财务影响的关键因素。大公司正引领这一变革,它们更积极地招聘AI相关人才并进行员工再培训。此外,企业正逐步采用AI于多个业务职能,包括营销、销售、产品开发和服务运营。尽管目前大部分公司尚未看到AI对企业整体利润的显著影响,但已有迹象表明,AI的应用正在增加收入并减少成本。 适合人群:企业高管、AI项目经理、战略规划人员以及对AI技术应用感兴趣的商业人士。 使用场景及目标:①帮助企业管理层理解如何通过AI技术优化内部流程并提高效率;②为AI项目的实施提供参考,确保企业在部署AI时能够最大化其商业价值;③指导企业在风险管理、人才招聘和员工技能升级方面做出明智决策。 其他说明:随着AI技术的发展,企业需要不断调整自身结构和流程以适应新技术带来的变化。文中提到的最佳实践如建立专门团队推动AI采用、定期沟通AI价值、高层领导积极参与等做法,可以为企业成功引入AI提供有益借鉴。此外,文中还强调了AI对不同行业的影响差异,以及个人使用AI工具的趋势变化。

2025-05-20

### 2024年中国AI基础数据服务行业研究报告综述、行业概述

内容概要:本文深入剖析了2024年中国AI基础数据服务行业的发展现状、市场研究、厂商案例及面临的挑战与机遇。文章指出,AI产业正在经历多模态大模型、长文本处理和大模型小型化等热点研究方向,推动了AI技术的快速发展。央国企凭借数字化基础和资源投入,成为大模型项目建设的主力军。在AI基础数据服务市场,数据、算法和算力是构建AI系统的三大核心要素,高质量数据的获取与标注成为推动AI算法创新和优化的关键。AI基础数据服务厂商通过提供标准数据集、定制数据集和配套产品工具服务,满足各行业AI技术发展的需求。然而,行业也面临着人力短缺、项目管理复杂、信息安全和高质量数据获取困难等挑战。尽管如此,AI技术的快速发展带来了旺盛的数据需求,高质量数据集和多模态数据集的需求增加,数据服务软件平台的价值不断提升。 适合人群:对AI基础数据服务行业感兴趣的从业者、投资者和研究者。 使用场景及目标:①了解AI基础数据服务行业的最新发展动态和趋势;②掌握AI基础数据服务市场的主要厂商及其业务布局;③分析AI基础数据服务行业面临的挑战与机遇,为企业决策提供参考。 其他说明:本文引用了艾瑞咨询研究院的研究成果,提供了详实的数据和案例,旨在为读者提供全面的行业洞察。

2025-05-20

AI大模型训练大规模智算中心建设方案(239页+WORD).docx

内容概要:本文档详细介绍了AI大模型训练大规模智算中心的建设方案,涵盖项目概述、需求分析、基础设施规划、软件系统部署、数据管理与处理、网络架构设计、电力与冷却系统、环境监控与管理、项目实施计划、风险管理、测试与验收、运维与支持、预算与成本控制、法律与合规、持续优化与扩展等各个方面。项目旨在构建一个高性能、高能效、可扩展的智算中心,以满足未来几年内AI大模型训练的算力需求。核心目标包括支持大规模分布式训练、提供高效的能源管理、实现计算资源的弹性扩展、构建安全可靠的数据处理环境。文中还详细阐述了智算中心的计算能力、存储性能、网络带宽、能耗管理等关键指标,并分阶段规划了项目的实施步骤。 适合人群:从事AI大模型训练的研究人员、工程师、项目管理人员,以及对智算中心建设感兴趣的科技从业者。 使用场景及目标:①为AI大模型训练提供高效、稳定且经济的计算资源;②确保智算中心的高能效比和绿色可持续发展;③实现计算资源的动态扩展,适应不同规模与复杂度的训练任务;④构建安全可靠的数据处理环境,确保模型训练过程中的数据隐私与安全。 阅读建议:本文档内容详尽,建议读者重点关注各章节的核心需求和技术实现细节,结合实际需求进行理解和应用。同时,关注项目实施计划和风险管理部分,确保在实际建设中有条不紊地推进。

2025-05-20

### AI代码平台及产品发展简报总结

内容概要:本文由甲子光年智库出品,详细探讨了AI代码平台及产品的发展现状与前景。文章首先介绍了生成式AI的快速发展为代码领域带来的创新和变革契机,随后分析了大模型(如Llama3、Qwen1.5等)的增长及其对AI代码生成的支持作用。文中强调了高质量数据、丰富的应用场景和广泛的用户基础为AI代码平台提供了坚实的发展基础。此外,文章还探讨了AI代码平台如何通过提高编程效率、减少重复劳动、优化代码质量和增强代码可读性等多方面提升开发者的生产力。文中列举了多个国内外知名厂商的产品及服务能力,如百度的文心快码、众安保险的DevPilot、aiXcoder等,并对其功能特点进行了详细介绍。最后,文章展望了未来AI代码平台的发展趋势,指出AI将逐渐改变开发者的角色,使他们能够更专注于高层次的开发任务。 适合人群:具备一定编程基础的研发人员、软件工程师、数据科学家及对AI编程感兴趣的从业者。 使用场景及目标:①理解AI代码平台的技术原理及其对企业开发流程的优化作用;②学习如何利用AI工具提高代码生成效率、质量及团队协作效果;③探索AI代码平台在不同行业中的具体应用场景及最佳实践案例。 阅读建议:本文内容详实,涵盖AI代码平台的技术背景、产品功能及未来发展趋势,建议读者结合自身需求,重点关注与自身工作场景相关的部分,并尝试将文中提到的技术应用于实际项目中,以验证其效果。

2025-05-20

### 【人工智能领域】Manus AI智能体:AGI发展新范式的技术原理与应用实践

内容概要:本文详细介绍了Manus AI智能体,作为中国团队推出的全球首款通用型AI Agent,它在AGI(通用人工智能)发展中具有重要意义。文章首先回顾了AGI的发展历程,从早期探索到现代研究进展,再到未来展望,强调了智能体在AGI进化中的关键地位。接着,文章深入剖析了Manus AI的技术原理,包括其任务规划与执行机制、认知控制中枢、多模态感知系统等核心功能。此外,文中还展示了Manus AI在金融分析、信息搜集与整合、内容创作等方面的实际测试案例,并对其用户体验进行了评估。最后,文章探讨了Manus AI的发展前景与面临的挑战,指出了中国智能体研发团队在实用化与商业化领域的独特路径。 适合人群:对AI技术感兴趣的读者,尤其是从事人工智能研究、开发及相关领域的专业人士。 使用场景及目标:①帮助读者理解AGI的发展历程和现状;②详细介绍Manus AI的技术特点和应用场景;③为用户提供使用Manus AI的具体指导和建议。 其他说明:文章引用了大量权威资料,确保信息的准确性和权威性。同时,文中还提供了Manus AI的交互指南和高级提示词技巧,帮助用户更好地发挥其潜力。文章强调了Manus AI在实际应用中的优势,如自主完成复杂任务、结果导向设计等,并指出了当前存在的技术瓶颈和发展方向。

2025-05-20

华为+AI大模型开源生态及大模型平台实践(演讲PPT)-40页.pdf

华为+AI大模型开源生态及大模型平台实践(演讲PPT)-40页.pdf

2025-05-20

【人工智能领域】Agent与MCP技术发展解析:构建自主智能体和多智能体系统的实践指南了AI Agents和

内容概要:本文由波士顿咨询集团(BCG)发布,深入探讨了AI代理(Agents)及其背后的关键技术——模型上下文协议(MCP)。文章首先介绍了AI代理的发展历程,从最初的简单指令执行器到如今能够自主观察、计划和行动的复杂系统。随后,文章详细解析了MCP的作用,指出它如何帮助AI代理更好地与其他系统和工具交互,从而提高其可靠性和企业级应用能力。此外,文中还列举了多个实际案例,展示了AI代理在不同行业中的成功应用,如金融、供应链管理和软件开发等。最后,文章讨论了未来AI代理的发展趋势,强调了安全性、互操作性和多代理协作的重要性。 适合人群:对AI技术和企业级应用感兴趣的IT专业人士、数据科学家、产品经理以及企业管理层。 使用场景及目标:①理解AI代理从简单的指令执行器演变为复杂的自主系统的历程;②掌握MCP如何增强AI代理的功能,使其更好地适应企业环境;③学习如何在实际业务中部署和管理AI代理,以提高效率和创新能力。 其他说明:本文不仅提供了理论知识,还结合了大量实际案例和最佳实践,有助于读者全面了解AI代理及其相关技术的应用前景和发展方向。此外,文章强调了安全性和合规性的重要性,提醒企业在实施AI解决方案时必须考虑这些问题。

2025-05-20

盘点个保审计开展前的准备工作与文件.pptx

盘点个保审计开展前的准备工作与文件.pptx

2025-05-20

40页鱼骨图.pptx

40页鱼骨图.pptx

2025-05-20

项目计划书模板.PPT

项目计划书PPT

2025-05-20

玩转Dify:大模型应用汇总.zip

案例1:Artifact.yml 这个应用可以将LLM生成的内容渲染成更加清新美观的页面,类似claude的Artifact功能 案例2:MCP-amap.yml 这个工作流使用了MCP Agent策略来调用高德地图MCP Server,能让大家很好理解Agent策略的使用,最重要的是可以加深对MCP的一个认识 案例3:全书翻译.yml 这个工作流将长文本切分为一个个的chunks,再使用迭代器组件实现遍历翻译,解决大模型的上下文限制一个经典案例,如果有类似的场景需求,可以参考一下。 案例4:Form表单聊天Demo.yml 通过表单登录完成token获取,登录完成之后才能继续访问应用。对于不想单独实现独立页面又想控制访问权限的场景,可以作为参考。

2025-05-19

DIfy AI应用:chart-demo.yml

DIfy AI应用:chart_demo.yml

2025-05-19

Dify智能体:Demo-tod-agent.yml

Dify智能体:Demo-tod_agent.yml

2025-05-19

营收对比表Excel模板.zip

营收对比表Excel模板.zip

2025-05-19

01-《DeepSeek掘金》随书资源-下载说明V1.0.pdf【DeepSeek掘金】随书资源及企业内训模块解析:涵盖CodeEasy软件、提示词、PPT及AI办公培训

内容概要:《DeepSeek掘金》不仅是一本书,更是一个终身学习的资源平台。书中提供的核心框架配合持续更新的资源生态,形成了一个动态的学习体系。该书配套了专为其定制的CodeEasy软件,用户无需复杂安装,解压即用,带来了国内首创的“沉浸式”阅读体验。CodeEasy软件具备书籍目录区、书籍资源区、提示词专区、编程项目区四大主要功能区,支持多种开发语言。此外,还提供了1000多页的随书PPT,涵盖基础、生产力、智能办公等多个方面,以及700多个精选提示词,实现了“零输入式”交互体验。企业内训模块则提供了专业知识库、AIGC培训材料和办公实战包,满足企业和个人的学习需求。; 适合人群:对DeepSeek领域感兴趣,希望深入了解并实践相关技术的读者,包括但不限于企业员工、技术爱好者、办公人员等。; 使用场景及目标:①通过CodeEasy软件,快速上手DeepSeek相关技术,进行实际操作;②利用随书PPT和提示词,深入学习DeepSeek的基础理论和应用技巧;③借助企业内训模块,提升企业内部员工的技术水平和工作效率。; 其他说明:本书由36位资深讲师共同编写,累计授课学员超过10万人次。新书发布后,创作团队将通过多种渠道持续提供专业学习服务,确保每位读者获取最前沿的技术知识与实践经验。

2025-05-18

销量完成度Excel模板.zip

销量完成度Excel模板.zip

2025-05-16

销量同比分析Excel模板.zip

销量同比分析Excel模板.zip

2025-05-16

事故车分析Excel模板.zip

事故车分析Excel模板.zip

2025-05-16

生产合格率Excel模板.zip

生产合格率Excel模板.zip

2025-05-16

售后回访表Excel模板.zip

售后回访表Excel模板.zip

2025-05-16

市场情况分析表Excel模板.zip

市场情况分析表Excel模板.zip

2025-05-16

申领分析表Excel模板.zip

申领分析表Excel模板.zip

2025-05-16

上半年库存Excel模板.zip

上半年库存Excel模板.zip

2025-05-16

人员变动表科技风Excel模板.zip

人员变动表科技风Excel模板.zip

2025-05-16

人均产值分析Excel模板.zip

人均产值分析Excel模板.zip

2025-05-16

渠道销量分析表科技风Excel模板.zip

渠道销量分析表科技风Excel模板.zip

2025-05-16

汽车租赁表科技风Excel模板.zip

汽车租赁表科技风Excel模板.zip

2025-05-16

评价活跃度Excel模板.zip

评价活跃度Excel模板.zip

2025-05-16

男女比例人事分析科技风Excel模板.zip

男女比例人事分析科技风Excel模板.zip

2025-05-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除