- 博客(926)
- 资源 (43)
- 收藏
- 关注
原创 SQL 8 种 JOIN 6 种超直观讲解【小朋友都会】
本文用6种生活化类比讲解SQL JOIN操作:1)班级春游(学生表关联);2)找对象配对(男女匹配);3)快递包裹(用户与快递);4)灯开关(电路连接);5)地图路线(起点终点);6)动物饲养(饲养员与动物)。生动解释了INNER(双向匹配)、LEFT/RIGHT(保留单边)、FULL(全保留)、CROSS(笛卡尔积)、SELF(自连接)、SEMI/ANTI(存在性检查)等JOIN类型的核心逻辑,强调匹配基础、保留性、匹配性和特殊场景应用差异。通过日常场景帮助理解JOIN的数据保留规则和匹配机制。
2026-02-14 09:00:00
2171
原创 数据开发需求工时如何评估?
本文档为数据仓库开发需求评估模板,包含三部分内容:1.需求基础信息(编号、名称、分层等);2.工时明细(9项开发环节预估工时);3.复杂度与风险说明。模板适用于数据同步、模型设计、ETL开发等数仓建设全流程评估,包含风险缓冲机制,为数据项目提供标准化评估框架。
2026-02-13 10:00:00
252
原创 海豚调度器DataX任务执行失败(退出码127)解决方案(软链接版)
本文针对海豚调度器中DataX任务执行报错"python2.7: No such file or directory"及配置文件被还原问题,提出通过创建系统软链接的无侵入式解决方案。具体步骤包括:查找真实Python和DataX路径,创建软链接映射到调度器期望路径,修正DataX配置并重启服务。验证方法涵盖软链接检查、手动执行任务测试和调度器提交验证。注意事项强调软链接维护、权限设置和配置文件复用,同时提供常见问题的排查指引。该方案无需修改调度器配置文件,可永久性解决路径适配问题。
2026-02-12 12:00:00
861
原创 如何实现高内聚低耦合的数据模型设计?
数据模型设计的高内聚与低耦合实践 摘要:本文提出了一套实现数据模型高内聚和低耦合的实践方案。通过分层架构(ODS、DWD、DWS、ADS)实现单向依赖,采用维度建模(星型模型)确保职责单一,并建立强约束规范来隔离主题域和统一公共维度。关键措施包括:禁止跨层依赖、避免过度宽表、统一指标口径等。最终实现了业务变更影响局部化、报表开发独立化、维度变更自动化等效果,使数据血缘关系保持清晰无冗余。
2026-02-12 12:00:00
1331
原创 数仓面试提问:为什么不建议在ADS层写复杂SQL?
摘要:数据仓库分层设计中,ADS层应避免编写复杂SQL,否则会违背分层原则(ODS原始数据、DWD明细清洗、DWS聚合计算、ADS业务适配)。复杂SQL会导致性能问题(重复计算、响应延迟)、维护困难(可读性差、变更成本高)、稳定性风险(数据波动敏感)和复用性低(定制化代码冗余)。最佳实践是将复杂计算下沉到DWS/DWD层,使ADS层仅保留简单筛选和格式转换的轻量级查询,确保各层职责单一,提升整体效率和可靠性。(149字)
2026-02-12 10:00:00
28
原创 美团数据开发一面:为什么DWD层不能做跨域?
DWD层设计遵循单域原则,避免跨域操作的四个核心原因:1)违背分层职责,跨域关联应属于DWS层;2)导致表间强耦合,维护成本剧增;3)造成口径混乱,降低复用性;4)引发明细数据膨胀,影响性能。因此DWD层应专注单域数据清洗和标准化,跨域处理必须上浮至DWS层完成。这一设计原则确保了数据仓库的高内聚低耦合特性,为后续分析提供清晰可靠的基础数据。
2026-02-11 12:00:00
900
原创 美团26校招数据开发一面
本文摘要:零售行业数仓建模专题,涵盖本体论指导建模、制造业物料管理方案、指标标签协同设计等实战内容。重点解析DWD/DWB层建设难点与解决方案,探讨如何基于业务过程建模。包含SQL开发实例(腾讯游戏战败场次分析)、业务理解方法论,以及数仓面试高频问题(指标梳理、数据域设计等)。为数据从业者提供从理论到实践的完整知识体系,助力提升数据仓库建设能力。
2026-02-09 11:00:00
333
原创 数据治理之后如何体现收益?| 阿里云
摘要: 数据治理立项可从四大核心维度入手:1)降本:减少存储/算力、人力及系统成本;2)增效:提升数据获取效率、统一口径、加速交付;3)增收:支撑精准营销、风控优化等业务增长;4)合规:满足法规要求,降低数据风险。收益通过量化指标体现,如存储成本下降率、需求交付周期缩短、营销ROI提升等。落地需先定基线,试点后推广,绑定业务KPI并建立收益看板。典型案例如核心表准确率提升至99.5%,跨部门争议减少90%。最终目标是通过规范治理实现成本优化、效率提升、业务增值及风险可控。
2026-02-09 10:30:00
627
原创 指标治理视角下的标准建模方法与流程
本文系统阐述了数据指标治理的核心原则与实施框架。提出以"治理优先"为核心理念,构建四层指标体系(原子指标、复合指标、衍生指标、业务指标),强调每个指标必须包含统计对象、计算逻辑、维度限定、时间规则和业务口径五大要素。详细说明了标准化建模流程七个步骤,包括业务域拆解、原子指标抽象、指标评审等关键环节,并制定了命名规范、编码规范等强制执行标准。同时指出必须配套元数据管理、血缘追踪等治理能力,避免直接建"大而全"业务指标等常见误区。通过交易域实战示例,展示了从原子指标到衍生
2026-02-05 10:00:00
1275
原创 指标模型与数据模型的核心区别
数据模型与指标模型的本质区别在于:数据模型是数仓底层架构,解决数据存储与关联问题,采用星型/雪花模型等形态落地于DWD/DWS层;指标模型则是上层业务体系,规范指标口径与计算逻辑,以原子/派生指标等形式存在于DWS/ADS层。二者互为支撑,数据模型为指标提供结构化基础,指标需求又反向驱动模型优化。从应用看,数据模型面向技术人员解决数据冗余问题,指标模型服务于业务人员统一分析口径,共同实现数据价值转化。
2026-02-04 12:00:00
927
原创 零售行业数仓本体建模落地方案
本文提出了一套基于数据本体论的零售行业数仓建模方案。方案包含四部分核心内容:1)跨域通用的全局核心本体清单(客户、商品等6个实体);2)6大业务域(交易、客户等)的本体详情与属性字典;3)本体关系映射规则;4)数仓分层落地规范。该方案采用维度建模方法,将细粒度实体映射到DWD层,聚合本体映射到DWS层,场景化本体映射到ADS层。方案支持根据细分行业(如生鲜、美妆)进行轻量扩展,同时提供本体版本管理和落地评审机制,确保语义一致性。最终形成可直接用于SQL开发的物理模型设计表,包含表名、粒度、关联关系等完整规范
2026-02-04 11:30:00
39
原创 大模型提示词之约束条件
摘要:大模型提示词中的约束条件用于精准控制输出内容,确保其符合用户需求。约束条件可分为8类:内容范围、格式规范、风格语气、输出粒度、逻辑规则、排除性、角色绑定和特殊场景约束。设计约束时需遵循5个原则:表述具体、位置靠前、分点清晰、适度约束和贴合任务目标。通过示例展示了不同场景下约束条件的综合应用,并指出常见误区如约束模糊、过度或矛盾等。合理设计约束条件能显著提升大模型输出的精准度和可用性。
2026-02-03 13:00:00
929
原创 数据本体论如何指导数仓建模?
数据本体论指导数仓建模的核心在于构建业务语义与数据结构的桥梁。该方法从业务域中抽象标准化知识体系,包含核心概念、属性、关系和规则五大要素,并将其映射为分层数仓模型。通过"业务本体梳理→本体建模→模型映射→治理迭代"的流程,实现数仓从"结构存储"到"语义载体"的升级。相比传统建模,该方法能解决语义不一致、跨域融合难等问题,使数仓具备更好的可扩展性和业务对齐性。实践表明,以数据本体论为指导的数仓建模能显著提升数据资产的可理解性和复用价值。
2026-02-03 11:30:00
50
原创 大模型提示词的约束条件可以从哪些维度进行优化?
本文提出优化AI模型输入的七大维度方法论:1)需求分层,区分核心与次要约束;2)表述量化,消除模糊描述;3)结构化呈现,突出关键约束;4)动态适配模型与任务特性;5)确保约束逻辑自洽;6)设置校验容错机制;7)持续迭代优化。针对技术类任务建议全维度覆盖,创意类任务可聚焦核心维度。该方法通过精准约束设计,有效提升模型输出质量与可控性,特别适用于SQL编写等技术场景,同时提供通用优化框架。
2026-02-02 12:30:00
2081
原创 什么是数据本体论?
数据本体论源自哲学范畴,在计算机科学中演变为对概念体系的规范化定义,包含类、属性、关系等核心要素。相比传统数据建模,它更注重语义统一和推理能力,能有效解决数据孤岛问题,优化ETL流程,并支持AI分析。主要应用于企业数据治理、智能决策等领域,但实施面临构建成本高、维护难度大等挑战。作为连接业务与数据的语义基石,数据本体论正成为复杂数据环境下实现智能治理的关键技术。
2026-02-02 12:00:00
748
原创 维度建模 VS Data Vault 模型?
维度建模与DataVault是数仓建设的两种主流方法:维度建模面向分析,采用星型/雪花结构,查询简单但扩展性差;DataVault面向整合,采用Hub-Link-Satellite三层结构,扩展性强但查询复杂。实际应用中,大型企业常采用分层架构:底层用DataVault实现数据整合与扩展,上层用维度建模支持业务分析。两者各有优势,维度建模适合单一业务分析,DataVault适合跨域整合与业务快速变化场景。开发人员应根据具体需求选择合适方法,掌握两者是构建企业级数仓的关键能力。
2026-01-29 12:00:00
657
原创 数仓宽表面试高频问题及答案完整总结
数据仓库宽表是指将多个维度表和事实表预先关联整合而成的单表结构,其核心价值在于提升查询性能、降低使用门槛并确保数据一致性。宽表适用于高并发低延迟查询、非技术人员使用等场景,但存在存储成本高、灵活性差等缺点。设计时应遵循业务主题明确、字段按需整合等原则,并通过全链路数据质量保障体系确保一致性。在实时数仓中,宽表通常采用Flink等流处理引擎实现秒级延迟。优化策略包括列式存储压缩、分区索引等。与窄表和星型模型相比,宽表在查询性能和使用便捷性上更具优势,但在灵活性和实时性上存在不足。
2026-01-29 09:00:00
743
原创 SQL库存消耗数据开发:制造业物料管理数据方案
本文针对制造业库存消耗管理问题,提出了一套基于SQL的数据驱动解决方案。通过构建库存消耗追赶计划,实时追踪关键物料消耗情况,量化计划与实际消耗的偏差。方案采用分层SQL实现,包含数据清洗、累计计算、追赶分析、策略推导和风险预警五个核心步骤。重点设计了标准化业务指标体系,包括基础消耗指标、累计对比指标和库存决策指标,并通过物料配置表实现规则动态化管理。该方案能有效识别消耗滞后或过快问题,为生产调度提供数据支持,优化库存周转并降低资金占用,适用于离散制造和流程制造场景。
2026-01-28 12:00:00
42
原创 数据职场新人,如何防止背锅?给职场新人的几点建议
职场防背锅,本质是用流程对抗人性——人性爱甩锅,流程逼透明。新人前1-2年踩坑是必经之路,但每背一次“明明白白的锅”,就离“不背锅”更近一步。你补充的“私聊转群聊”,“文档不删”,“模糊边界”这些细节,恰恰是教科书不会写、但决定职场生死的隐性规则。
2026-01-28 10:00:00
583
原创 数仓增全量改造数据一致性自动化校验脚本 | Hive
本文介绍了一套完整的数仓增全量改造数据一致性校验方案,包含5个核心模块:源端-ODS全量同步校验、增量采集精准性校验、增全量融合表校验、双轨运行一致性校验和结果汇总告警。方案采用全参数化设计,适配Hive/Spark/Flink环境,支持对接主流调度工具和告警平台。通过行计数、主键唯一性、核心指标比对等多维度校验,确保改造过程中数据一致性。脚本提供灵活配置项,可快速复用并扩展校验规则,满足不同业务场景需求,是数仓增全量改造的必备质量保障工具。
2026-01-27 09:00:00
51
原创 指标与标签体系协同设计策略
本文系统阐述了指标与标签体系的协同设计方法论。核心观点包括:协同设计应从顶层规划开始,以统一业务目标、数据架构和标准规范为前提;通过指标为标签提供量化依据、标签为指标提供细分维度、二者相互验证三大逻辑实现互补;重点应用于用户生命周期管理、精准营销等四大业务场景;并需建立统一的数据治理和迭代机制保障长期运行。该体系突破了单一数据应用的局限,实现了业务洞察的精准化与落地的高效化。
2026-01-27 09:00:00
36
原创 常见业务主题域设计示例
主题域划分是数据治理的基础环节,其核心在于将业务数据按逻辑关联性进行分类管理。不同行业具有典型的主题域划分模式:短视频行业关注用户、内容、互动等核心领域;电商侧重会员、商品、交易等环节;金融行业围绕客户、产品、风控等关键要素;制造业聚焦生产、设备、物料等流程;能源行业则涉及发电、输电、配电等专业领域。实施时需避免过度细分或边界模糊,应确保主题域既覆盖核心业务又保持合理粒度,同时考虑系统集成和未来发展需求。合理的主题域划分能显著提升数据管理效率和分析价值。
2026-01-26 12:00:00
1612
原创 面试提问:数仓开发如何做需求才能不出错呢?你是否有自己的一套工作SOP?
摘要:本文系统梳理了数据仓库需求处理全流程的标准化方法论,提出从需求对齐、技术拆解、数据探查到开发验证的五阶段专业框架。核心要点包括:通过业务目标定位和模糊点排查实现需求精准对齐;基于数据源溯源和全链路逻辑拆解确保指标口径统一;实施数据质量前置校验规避开发风险;复用历史资产提升开发效率;建立三层验证机制保障交付质量。文末提供了流程模板和面试话术,强调数仓工程师应通过标准化流程管控需求风险,确保数据输出的准确性、一致性与业务适配性。(149字)
2026-01-26 10:00:00
571
原创 基于SQL分位数分析的物流供应链效能优化实践
摘要:本文探讨分位数分析在物流供应链管理中的应用,通过SQL实现配送时效、线路成本和仓库效能的精细化评估。针对配送时效波动、成本分布不均等痛点,采用四分位、十分位和五分位方法建立分级体系,结合数学原理与业务场景设计分析方案。文章详细讲解NTILE、PERCENTILE_CONT等SQL函数的实现逻辑,提供三类场景的实战案例及业务落地建议,帮助物流企业从均值管理转向精准的层级管理,提升运营效率与利润水平。分析过程强调数据清洗、函数适配和业务对齐等关键注意事项。
2026-01-23 12:00:00
54
原创 如何利用SQL计算ABC库存分类(帕累托分析)?
本文介绍了如何利用SQL窗口函数实现ABC库存分类法,基于帕累托法则(二八定律)将产品划分为A、B、C三类。A类产品(前20%)贡献约80%销售额,B类(中间30%)贡献15%,C类(后50%)仅贡献5%。通过NTILE(10)函数将产品按销售额降序分桶,并结合累计占比计算,可自动化完成分类。该方法可帮助企业聚焦核心产品、优化采购策略,不同类别产品应采取差异化库存管理策略。SQL实现方案高效准确,可直接应用于业务系统,实现库存管理的数字化升级。
2026-01-22 22:44:42
108
1
原创 SQL时间序列分析:孤岛与间隙问题方法全总结
摘要:时间序列数据分析中,孤岛与间隙问题是核心痛点,涉及连续区间的识别与断裂定位。时间序列数据具有时间依赖性、粒度一致性、完整性差异和多维度关联性等特征。孤岛代表连续有效区间,间隙则是断裂部分。解决方法包括穷举日期法、行号法、追赶指标法、递归CTE法等,各有适用场景和优缺点。选型需考虑数据量、规则复杂度等因素,遵循"基准标准化→规则显性化→分层聚合提效"的通用逻辑。分析时需明确时间粒度、连续判定规则,统一时间口径,选择合适的数学建模方法,并分层输出结果验证。
2026-01-22 10:00:00
1311
原创 最近小红书讨论很火的一道SQL面试题,我用追赶指标法秒了
摘要:本文介绍了一种使用"追赶指标法"解决动态长度孤岛与间隙问题的高效HiveSQL方案,适用于会员充值等连续区间计算场景。该方法通过计算"月索引-累计前序充值月份"作为追赶指标,利用窗口函数识别连续区间,无需递归或穷举日期。核心步骤包括:1)计算月索引和累计前序月份;2)生成追赶指标;3)用MAX函数锁定分组;4)聚合得到连续区间。该方案性能优异(O(nlogn)),支持乱序、重叠记录,业务语义清晰,适用于大数据量场景。
2026-01-21 10:00:00
908
原创 面试提问:如何进行指标梳理?具体从哪些方式展开
指标梳理是将业务需求转化为标准化量化指标的核心工作,需遵循业务导向、分层分类等原则。流程包括:1)明确目标与业务边界;2)通过访谈、报表复盘等方式调研需求;3)按业务域和技术维度分层分类指标;4)联合业务方定义统一计算口径;5)结合数仓分层落地指标;6)建立管理迭代机制。关键是要打通业务与技术,确保指标可复用、可监控,支撑数据决策。
2026-01-20 10:00:00
67
原创 为什么我们要用宽表模型给LLM提供输入数据?
宽表模型为LLM提供数据支持的核心优势在于:结构化、高信息密度和统一口径能有效降低LLM的推理负担与幻觉概率。宽表通过预JOIN和维度退化消除了复杂关联推理,适配LLM有限的上下文窗口,避免逻辑型幻觉;统一语义口径防止口径混淆;结构化数据支持精准校验。此外,宽表复用现有数仓资产,降低工程成本,支持增量更新。典型应用场景包括电商客服、金融投顾等需要精准数值输出的业务,是连接数仓与LLM的最佳桥梁。
2026-01-16 13:00:00
1769
原创 面试提问:一个新的业务如何设计数据域?
新业务数据域设计方法论与实战指南 摘要:本文系统阐述了新业务数据域设计的全流程方法。首先强调业务调研的核心地位,需深入理解业务模式、核心实体及指标需求。设计步骤包括:划分最小业务过程、聚合归类形成数据域、验证合理性并输出规范文档。重点提出数据域划分的四大原则:稳定性、互斥性、完备性和可扩展性。同时给出实用避坑指南,如避免过度拆分和临时业务驱动。最后提供了面试场景下的价值展示框架,强调通过量化成果证明设计价值,如降低表冗余率35%、提升指标统一率至95%等。该方法可有效解决新业务数据冗余、口径混乱等问题。
2026-01-16 12:00:00
50
原创 用SQL实现三次指数平滑预测:递归与非递归两种解法详解
本文介绍了两种SQL实现三次指数平滑法的方法,用于预测1960-1982年全国社会商品零售额数据。第一种采用递归CTE实现,适合MySQL8.0+等支持递归的数据库,代码紧凑但调试难度较大;第二种通过LAG窗口函数分步计算,适配老版本数据库,逻辑更直观但步骤较多。两种方法均遵循"初始化-平滑计算-参数求解-预测"的流程,结果一致且可直接应用于其他时间序列预测场景。文章还强调了平滑系数调整、异常数据处理等实战注意事项,展示了SQL在时间序列分析中的应用价值。
2026-01-15 22:59:00
648
原创 数仓行业黑话大全
本文系统梳理了数据仓库建设中的核心术语体系,涵盖基础概念、分层架构、开发流程、数据质量、运维监控和分析应用六大类。详细解释了事实表、维度表、星型模型等基础概念,ODS、DWD、DWB等分层架构特点,以及ETL、CDC等开发流程技术。同时介绍了数据质量保障、任务运维监控和OLAP分析应用等关键环节的专业术语,为数据仓库从业者提供了一份全面的术语速查指南,帮助快速掌握数据仓库建设中的专业"黑话"。
2026-01-15 10:00:00
905
原创 AI智能体构建:提示链(Prompt Chaining)设计模式
摘要: 提示链(PromptChaining)是一种通过分步拆解复杂任务提升大语言模型(LLM)处理能力的工程化方法。其核心逻辑包括模块化设计、输入输出传递和外部能力集成,相比单一提示具有可靠性高、可调试性强等优势。关键设计原则强调子任务单一聚焦和结构化输出(如JSON)。典型应用场景涵盖信息处理、内容生成、代码优化等7大领域,通过链式流程(如“提取→清洗→生成”)实现精准控制。提示链不仅降低开发成本,更是构建智能体的基础技术,支持多步推理与动态交互,推动LLM从孤立模型向系统化解决方案演进。
2026-01-14 12:00:00
729
原创 面试提问:数仓中DWD层建设最大困难是什么?
摘要:数据仓库DWD层建设面临多源异构数据整合、质量管控、业务适配等核心难题。其中,多源异构数据的标准化整合是最棘手的挑战,涉及格式、语义和结构的统一,以及跨部门业务口径对齐。解决方案包括制定统一数据规范、构建自动化质量平台、采用弹性ETL架构和标准化维度管理。面试时可突出该问题的根源性、跨域性和长期性,并通过"规则-技术-闭环"的解决思路展示实际经验。这些措施能显著提升数据一致性,为下游应用奠定可靠基础。
2026-01-14 11:00:00
56
原创 什么是HITL 模式?AI 与人类协同的新范式
摘要 Human-in-the-Loop(HITL)是一种人机协同的智能系统范式,通过人类监督、干预与反馈优化AI决策,适用于高复杂度、高风险的敏感领域(如内容审核、金融欺诈检测)。其核心包括人类监督、反馈学习、决策增强等六要素,并衍生出Human-on-the-Loop变体(人类制定战略,AI执行)。HITL虽提升准确性与伦理合规性,但存在可扩展性不足、依赖人工专业水平等挑战。该模式平衡了AI效率与人类判断,是负责任AI开发的关键,尤其在需要持续优化与安全把控的场景中不可替代。
2026-01-12 11:00:00
1915
原创 数仓之DWB层完整设计方案与实战
摘要:DWB层(基础数据层)是数据仓库中连接DWD(清洗层)与DWS(服务层)的关键中间层,通过构建业务宽表、维度退化和沉淀基础指标,为上层的聚合分析提供即用型数据。其核心设计原则包括业务驱动、适度冗余和规范可控,具体实现需围绕业务实体进行多表合并、维度退化及基础指标计算。典型应用场景包括订单宽表构建和工单指标分析,通过Hive实现ORC格式存储和动态分区优化。DWB层能有效降低维护成本、提升查询效率,但需避免过度设计,仅在出现DWS层冗余、性能瓶颈或多维查询需求时引入。设计时应平衡存储成本与查询效率,确保
2026-01-12 00:00:01
47
原创 智能体路由:动态决策的四大核心机制
智能体路由是智能体系统的动态决策机制,通过条件逻辑实现多路径选择。核心实现方式包括4种决策机制(LLM路由、嵌入路由、规则路由和机器学习路由)和2种工程化方案(LangChain/LangGraph的显式定义与Google ADK的自动路由)。该技术将智能体从静态执行转变为动态决策系统,适用于复杂多变的真实场景,其选择取决于速度、灵活性等需求。路由能力是构建响应式智能体系统的关键。
2026-01-09 12:00:00
1546
原创 Dify 会话变量使用指南及案例实战
本文系统介绍了Dify平台中会话变量的使用方法与实战案例。主要内容包括:会话变量的基础特性(作用域、生命周期、数据类型)、基本操作步骤(创建、赋值、引用)以及高级应用场景(多轮对话记忆、流程控制、复杂数据存储)。通过三个典型案例(点餐助手、智能客服、表单收集)详细演示了会话变量在实际业务中的运用技巧,包括对象/数组类型的变量处理、条件分支控制和数据校验等。文章还提供了最佳实践建议,如命名规范、作用域管理和调试技巧,帮助开发者构建更智能的多轮对话应用。会话变量作为实现状态管理和上下文记忆的核心机制,能显著提升
2026-01-09 09:00:00
2467
原创 数据开发:如何深入理解业务并高于业务视角?
数据开发人员深入理解业务并实现高于业务的视角,是一个持续的、渐进的过程。深入理解业务:主动打通信息壁垒,建立「业务行为 - 数据流转 - 价值产出」的完整链路认知,实现业务与数据的双向映射。高于业务视角:充分发挥数据开发人员的核心优势,从「局部优化」到「全局最优」,从「具体场景」到「通用规律」,从「事后分析」到「前瞻性预测」,从「单一领域」到「跨域融合」,为业务提供更有价值的支撑。最终,数据开发人员将实现从「技术实现者」到「业务理解者」,再到「业务赋能者」的跨越,成为企业中不可替代的核心人才。
2026-01-08 11:00:00
98
原创 SQL腾讯面试真题:玩家战败场次中点位占领统计问题
文章摘要:本文详细分析了《和平精英》游戏地图485的战败场次统计需求,提出了三种SQL实现方案。核心业务规则要求统计战败场次总数及其中占领A/B点的场次数。解题思路采用递进式分层计算:先判定场次胜负状态,筛选战败场次,再标记占领情况,最后聚合统计。方案一使用多层子查询,方案二通过LEFT JOIN排除胜利场次,方案三采用CTE语法最简洁。三种方案均使用MAX(CASE WHEN)进行存在性判断,避免SUM导致的数据失真。执行结果为战败场次10次,其中占领A点1次、B点1次。文章强调实战中要注意存在性判断使用
2026-01-07 13:00:00
51
【财务数字化转型】基于SAP分析云的数据驱动财务决策系统:企业经营管理智能洞察与预测分析平台设计
2025-12-10
MySQL SQL 优化:核心原则、索引策略与实战案例
2025-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅