- 博客(701)
- 资源 (959)
- 收藏
- 关注
原创 本月累计 vs 上月累计环比计算 | SQL解决方案
摘要: 本文详细介绍了基于SQL的日环比分析方法,通过滚动累计值计算实现本月与上月同期的精细化对比。核心技术包括:1) 使用窗口函数计算每日累计值;2) 跨月日期精准对齐处理;3) 特殊场景解决方案(月初、月末、闰年等)。方案采用WITH子句构建本月/上月数据集,通过LEFT JOIN和COALESCE处理日期差异,并加入NULLIF安全除零机制。文章还涵盖执行优化技巧和典型业务场景应用,为生产量、销售额等指标的周期性分析提供了一套完整的高效解决方案。
2025-06-13 10:00:00
358
原创 京东金融面试提问:数仓中共性指标如何做下沉?请谈谈你的理解
共性指标是指那些在多个业务场景、报表、分析模型中都会被使用的指标,例如:用户活跃数(DAU/MAU)订单总数、订单金额转化率(点击率、下单率等)留存率新增用户数口径统一性强计算逻辑稳定使用频次高跨部门/业务线共享共性指标下沉是构建高效、一致、可维护数据仓库的核心实践。其本质是数据模型设计中“公共性”原则的体现,是“数据资产的复用与治理”,其核心目标是实现口径统一、逻辑复用、性能优化、易于维护。它是数仓走向成熟的重要标志之一。
2025-06-13 09:00:00
6
原创 数仓的“拆“与“不拆“:一场关于用户基础信息表的哲学辩论 | 基于网友提问
在数据仓库设计中,是否拆分用户基础信息表需要权衡业务场景。单表设计查询便捷、ETL简单,适合业务稳定、查询模式重合的场景;拆分设计业务边界清晰、扩展灵活,适用于高频独立访问、字段膨胀风险的场景。折中方案可将入职时间保留在基础表,离职时间拆分到事件表,并采用星型模型实现维度与事实表分离。核心原则是按业务过程建模,拆分能提升数仓的可维护性、性能和扩展性,是应对复杂业务需求的更优选择。
2025-06-13 09:00:00
420
原创 网友提问:数仓ADS层有事实表吗?|一个关于数据仓库分层架构的常见疑问
ADS 层的主要目的是提供面向最终应用的、高度聚合或轻度汇总的数据,通常以。
2025-06-12 11:00:00
714
原创 京东数仓面试提问:数仓中应用层怎么设计?应用层和汇总层的区别是什么?
特征汇总层 (DWS) -应用层 (ADS) -应用层 (ADS) -核心目标提供用户日粒度按类目订单行为的通用基础数据满足每日订单看板的最终展示需求满足风控模型对用户近7天订单明细行为特征的需求数据来源主要来自 DWD (订单, 用户, 商品) + DIM (类目)主要来自 DWS (跨主题:DWD (订单, 用户, 地址, 登录, 商品) +DWS(历史次数) + DIM (类目)模型特点星型/宽表,轻度汇总(用户+日+类目),轻度去规范化高度聚合宽表 (日+类目),极度去规范化,指标定制。
2025-06-11 09:30:00
47
原创 毛台 vs 某互联网公司:如何处理多值维度(多对多关系)?
在电商系统中,一个订单可能包含多个商品,每个商品又可能出现在多个订单中;在社交网络里,用户可以拥有多个标签,而每个标签又关联着无数用户。这种复杂的交互关系催生了数据库设计中的核心命题——多对多关系的处理艺术。处理多值维度(多对多关系)是数据仓库维度建模中的核心挑战。桥接表是解决这个问题的标准方案。本文将深入探讨桥接表的设计哲学与实践智慧。以下为毛台面试某互联网公司时被问到该问题时的模拟场景,让我们一起看看毛台面试中的遭遇,以及事后我们从毛台惨败的面试中应汲取什么样的经验。
2025-06-09 09:00:00
48
原创 Hive窗口函数RANGE BETWEEN详解:用法、场景与案例(附真实业务案例)
Hive窗口函数RANGEBETWEEN深度解析 摘要: 本文详细介绍了Hive中RANGEBETWEEN窗口函数的原理与应用。该函数通过基于ORDERBY列的值范围(而非物理行位置)定义窗口边界,特别适用于时间序列和数值区间分析。文章通过销售数据分析案例,展示了计算N天内累计销售额、金额范围内订单统计等典型场景的应用方法。重点对比了RANGEBETWEEN与ROWSBETWEEN的本质区别:前者处理逻辑数值范围,后者处理物理行偏移。最后结合金融风控实际案例,演示了如何在用户风险评分和持仓分析中实现精准的时
2025-06-06 10:00:00
44
原创 从经验到精准:制造业生产计划可视化决策全景图
制造业生产计划的数据驱动转型已成为现代企业提升运营效率的关键。文章系统阐述了三大核心内容:一、产能利用率、设备效率等核心指标,二、趋势分析、瓶颈识别等常用方法,三、数据质量、跨部门协作等应用要点。通过科学数据分析,企业可实现从经验管理到精准决策的转变,优化资源配置、提高生产效率并增强市场竞争力。全文强调数据分析能力已成为生产计划人员的必备技能,为制造业数字化转型提供了切实可行的实施框架。
2025-06-06 09:00:00
1965
原创 数仓面试提问:在资源(计算、存储、人力)受限的情况下,如何优先处理需求并保证核心交付?
在资源受限环境下高效保障核心交付的系统化方法 本文提出了一套完整的资源管理方法论,核心包括: 明确界定核心交付范围(业务价值、基础依赖、合规安全、客户承诺) 建立量化评估体系(RICE评分、WSJF经济优先级、MoSCoW分类、KANO模型) 实施透明沟通机制(数据可视化、机会成本分析、备选方案提供) 医疗AI项目实战案例:通过资源隔离(GPU专用)、需求量化排序(审计日志2000分>结节识别200分)和严格范围控制,5个月完成认证并超预期达成96.2%敏感度指标 关键经验:资源受限时,精准的价值判断比资源
2025-06-06 08:30:00
105
原创 数据分析师如何构建自己的底层逻辑?
摘要:构建数据分析师的底层逻辑需要系统性培养知识基础、思维模式和实战能力。核心包括:1)夯实业务知识、数据原理和工具方法;2)培养问题导向、批判性思维和结构化分析能力;3)通过项目实践锤炼数据敏感度和业务直觉;4)加强跨部门协作与行业交流。关键在于将分析方法内化为本能,从数据中提炼有价值的业务洞见并推动决策。这是一个需要持续学习、实践和复盘迭代的长期过程,最终实现分析能力和业务价值的螺旋式提升。
2025-06-05 09:15:00
1573
原创 SQL面试实战:货拉拉司机回本天数分析
本文通过货拉拉司机会员策略案例,详细解析如何用SQL解决时间序列累计计算问题。针对平台经济中评估司机回本周期的需求,提出四步解决方案:1)计算订单利润;2)关联缴费记录并窗口函数累计利润;3)确定首次回本日期;4)聚合平均回本天数。重点展示了窗口函数PARTITION BY和ORDER BY的组合应用,以及业务逻辑到SQL的转换过程。该方案可分析不同城市、套餐的回本差异,为优化会员策略提供数据支持,同时锻炼数据分析师处理复杂业务场景的能力,是数据分析面试中考察SQL和业务理解的典型案例。
2025-06-05 09:00:00
45
原创 DeepSeek技术溯源及前沿探索(PPT 浙江大学·2025)
以下是《DeepSeek技术溯源及前沿探索》PPT的核心内容总结(基于浙江大学朱强教授2025年报告):系统梳理了DeepSeek的技术发展脉络及其在AI领域的创新突破,深入剖析了DeepSeek技术的发展历程与未来方向。报告指出,DeepSeek在大语言模型领域取得重大突破,通过技术创新和系统优化,大幅提升了模型的推理能力和应用范围。总结:该PPT系统梳理了DeepSeek从Transformer基座到MoE架构的创新路径,突出其在效率、多模态及开源生态的突破,同时直面技术局限与全球化挑战。
2025-06-04 08:30:00
530
原创 破壁之道:如何用一致性维度打通企业数据仓库孤岛?
《一致性维度:打通企业数据孤岛的关键》 本文揭示了企业数据系统中"报表打架"的根本原因——数据孤岛现象,并提出了基于一致性维度的解决方案。通过零售企业案例,阐释了数据孤岛带来的四大典型问题:客户定义不统一、跨部门分析困难、商品口径不一致及时间统计口径差异。 一致性维度的核心在于建立统一的业务实体标准(客户、产品、时间等),包含四大要素:统一代理键、属性定义、粒度和数据管道。其实施路径包括:识别关键共享维度、制定统一标准、建立中心化管理流程、分发维度数据以及处理特殊场景。成功案例显示,该方
2025-06-03 09:00:00
769
原创 SQL面试提问 :如何计算每个月的订单数量和总金额以及与上个月相比的环比增长率
【SQL面试高频题解析:环比计算的双解法对比】 摘要:87%的SQL面试都会考察的环比计算题,常导致候选人出现嵌套查询爆炸、除零错误等问题。本文对比两种核心解法:1)窗口函数法(推荐)使用LAG+NULLIF处理环比,性能优越且代码简洁;2)自连接法需处理复杂日期逻辑,性能较差。关键避坑点包括:用NULLIF防御除零、COALESCE处理首月空值、DECIMAL锁定精度。窗口函数在大数据场景下性能提升显著(小时级→分钟级),面试时应强调其MapReduce优化原理及业务异常处理逻辑(如促销/故障导致的暴涨)
2025-05-30 09:00:00
54
3
原创 蘑菇头vs某短视频公司:如何治理同名不同义的指标?
摘要:本文深入剖析了数据仓库中"同名不同义"指标问题的根源与危害,提出了系统性的治理策略。"同名不同义"指同一指标名称在不同业务场景中存在计算逻辑或口径差异,导致决策失误、信任危机等严重后果。其成因包括组织孤岛、流程缺失、技术异构等因素。治理方案需从命名规范、指标字典、生命周期管理等多维度入手,结合技术手段(如语义层、元数据管理)和组织变革(如数据治理委员会)。文章还提供了面试满分回答框架,强调要通过具体案例、技术细节和业务价值的有机结合来展现专业能力。有效的指标治理
2025-05-29 10:00:00
44
原创 SQL面试提问:如何计算用户注册到首次下单的时间间隔分布?
本文介绍了使用SQL分析用户从注册到首次下单时间间隔的方法与价值。通过分层CTE结构实现模块化开发,包括提取首次下单时间、计算转化周期、分组统计等步骤。文章详细解析了SQL实现方案,包括时间标准化处理、区间分组策略和百分比计算等技术要点,并给出生产环境优化建议(分区裁剪、数据质量保障等)。业务应用示例展示了如何通过转化周期分布指导运营决策,如针对不同区间用户采取差异化策略。最后提供了面试回答的结构化模板(STAR-L法),强调技术实现与业务理解的结合,包括性能优化、结果解读和扩展思考等维度。该分析能有效评估
2025-05-29 09:00:00
40
原创 智慧财务系统:企业数字化转型的核心引擎
本文提出了一套完整的智慧财务系统建设方案,重点阐述了财务共享服务中心的实施路径。方案从战略价值、系统设计到实施保障进行全方位规划:智慧财务系统通过数据整合与智能分析支撑战略决策,强化集团管控并提升运营效率;财务共享中心采取分层架构设计,结合成本效益与服务导向原则优化流程;系统采用微服务架构与智能技术实现自动化处理,并通过分阶段策略保障落地。该方案为企业数字化转型提供了从价值守护到价值创造的实现路径,最终形成以数据驱动为核心的财务管理新范式。
2025-05-28 13:00:00
2066
原创 大模型提示词工程实践
摘要:本文对比分析了LangGPT格式化与非格式化提示词在不同任务中的表现。LangGPT格式通过明确角色设定和结构化指令,提高了模型响应的准确性和相关性,特别适合公文写作等规范化任务;非格式化提示则更具灵活性,适用于创意性任务如剧本创作。测试结果显示,结构化提示显著提升用户体验和输出质量,但可能限制创意发挥。建议根据任务类型选择合适的提示方式:规范任务用LangGPT格式,创意任务可保留灵活性。
2025-05-28 08:30:00
725
原创 大模型应用:开发移动端页面个人中心页面提示词
3、界面要符合现代APP的设计规范,使用户在使用APP时感到舒适、流畅、自然;设计一个穿搭搭配的APP,通过调用DeepSeek的api,结合天气、温度以及流行时尚信息,给用户推荐每日的穿着搭配建议方案,然后使用HTML和Tailwind CSS创建UI/UX参考图。请提供完整的html代码(页面结构,index.html)、css文件代码(样式,styles.css)和js文件代码(页面交互逻辑,可先提供空白框架,主要实现页面数据先采用mock方式和基本交互逻辑预留,script.js)。
2025-05-27 22:44:10
662
原创 数仓面试提问:如何将业务规划转化为数仓规划?
本文系统阐述了将业务规划转化为数仓规划的方法论,强调业务目标与数据架构的映射关系。主要内容包括:1.核心步骤:通过业务需求深度解析、指标体系构建、主题域划分等环节实现业务-数据转换;2.实施方法:提出需求锚定、架构设计、模型落地三阶段方法论,并详细说明各阶段输出物;3.电商案例:完整展示从"提升复购率"业务目标到数仓模型设计的技术落地路径;4.面试模板:提供结构化回答框架,突出业务理解、技术实现和成果量化能力。文章为数据仓库工程师提供了从业务规划到技术落地的完整解决方案。
2025-05-27 09:30:00
313
原创 SQL面试提问:如何计算销售KPI达成进度?
【摘要】文章模拟了HiveSQL面试场景,针对水果订单表的KPI统计需求,提出两种解决方案:1)窗口函数实现按日累计销售进度;2)CTE+行转列展示分类进度。详细拆解了SQL编写要点,包括日期处理、累计计算、行转列技巧和性能优化。同时总结了面试高频考点:窗口函数、动态KPI适配、NULL值处理等,并提供了进阶优化思路(分区表、列式存储)和应变策略(动态SQL生成)。最后给出面试建议:主动展示技术深度,明确需求边界。
2025-05-26 10:00:00
69
原创 AI赋能企业转型:从诊断到落地的实践路径
某物流企业通过上述方法论,用18个月实现AI在运输调度、仓储管理等6个场景的落地,整体运营成本降低22%,客户满意度提升19个百分点。正如麦肯锡研究指出:"AI转型成功的企业,80%的时间都花在需求定义和流程重构上,而非技术本身。后来通过全流程诊断发现,生产线上70%的次品源于设备校准误差,最终通过AI预测性维护系统将设备故障率降低40%,这才是真正触及本质的解决方案。例如某零售企业发现库存周转率低下,通过连续追问发现根本原因是"促销策略与区域需求错配",而非表面的"物流效率问题"。
2025-05-26 08:30:00
1333
原创 淘天数仓面试提问:如何建立与业务方沟通机制 ? 给出建议?
本文针对数仓开发中与业务方的沟通机制提出系统化建议。首先分析面试中常见问题,指出候选人回答的不足(如缺乏体系化、业务理解不深等)。随后从需求阶段、开发阶段、交付后协同三个维度,详细阐述沟通机制建设方案:包括需求评审标准化、敏捷交付模式、数据资产门户建设等。最后提供面试回答模板,强调用"痛点-解法-价值"三段式+量化案例展示专业能力。全文突出数据驱动思维,强调通过流程优化降低沟通成本,实现技术与业务的双向价值对齐。
2025-05-25 23:10:57
39
原创 SQL面试提问:如何找出每月GMV环比下降超20%的城市?
要找出每个城市每月GMV环比下降超过20%的情况,可以按照以下步骤进行:首先,按城市和月份聚合GMV数据,使用date_format提取年月并按城市分组求和。接着,通过窗口函数LAG获取同一城市上月的GMV数据。然后,计算环比变化率,并筛选出下降超过20%的记录。在处理过程中,需注意日期格式的兼容性、除零错误以及月份缺失问题。优化查询性能的方法包括增加分区字段或预聚合数据。此外,还需考虑如何处理上月GMV为0的情况,以及如何确保跨年排序的正确性。最终结果可用于业务改进,如排查异常原因并建立预警机制。
2025-05-23 09:00:00
33
原创 如何提升自己的职场思维?| 10个模型助你成为高效能人士
本文介绍了10个经过验证的思维模型,旨在帮助职场人士提升学习力、决策力、执行力和系统性思维。首先,通过“学习金字塔”和“费曼技巧”提升学习效率;其次,利用“六顶思考帽”和“10/10/10法则”优化决策过程;再次,通过“TOPIC模型”和“POA行动力”强化团队执行力;然后,运用“系统思维”和“SWOT分析”洞察复杂问题;最后,通过“刻意练习”和“KPT复盘法”实现持续精进。这些模型为职场人士提供了系统性的思考框架,帮助他们在复杂环境中游刃有余,实现职业成长与突破。
2025-05-22 10:00:00
2640
原创 SQL高频面试题:如何查询用户的累计消费金额及VIP等级?
在SQL面试中,查询用户的累计消费金额及VIP等级是一个常见问题。首先,需要从订单信息表中按用户和日期聚合每日消费金额,然后使用窗口函数按日期顺序累加金额,得到每个用户在每个下单日期的累计消费金额。接着,通过CASE WHEN语句根据累计金额动态计算VIP等级,如普通会员、青铜会员等。核心SQL代码包括预聚合、窗口函数和条件判断。面试中可能涉及的性能优化、数据清洗、数据倾斜处理等问题,可以通过分区表、数据预处理、Salting技术等方法解决。此外,设计灵活的VIP规则配置表也是加分点。总结时,应强调技术选型
2025-05-22 09:00:00
59
原创 SQL面试提问|如何统计每个用户的「最爱外卖品」?
本文详细介绍了如何使用HiveSQL统计每个用户购买次数最多的外卖品。首先,通过GROUP BY对用户和产品进行分组统计,计算每个用户购买每种产品的次数。接着,使用RANK()窗口函数对每个用户的购买次数进行排序,确保并列第一的记录都能被保留。最后,筛选出每个用户购买次数最多的产品。文章还强调了使用RANK()而非ROW_NUMBER()的原因,并提供了性能优化建议,如使用Hive分区表和预聚合。此外,文章还讨论了边界情况的处理,如用户只购买一种商品或多个商品购买次数相同的情况。最后,文章总结了面试中应对此
2025-05-21 10:00:00
37
原创 SQL面试提问:如何找出⽀付⾦额在前 20% 的用户?
本文详细解析了如何在HiveSQL中使用分位数函数和窗口函数来找出支付金额在前20%的用户。文章首先介绍了两种主要方法:使用PERCENT_RANK()窗口函数和NTILE(5)分桶技术。PERCENT_RANK()通过计算每个用户的支付金额在总支付金额中的百分比排名,筛选出排名前20%的用户;而NTILE(5)则将用户均匀分成五等份,第一份即为支付金额最高的前20%用户。文章还探讨了如何处理并列情况、用户数量不能被5整除时的分配方式,以及如何找出“中间60%”用户。最后,文章总结了两种方法的优缺点,并强调
2025-05-21 08:30:00
360
原创 解码数据语言:如何优雅的进行数仓字典建设?
文章探讨了企业构建“数据词典”的重要性及其方法论。数据词典作为业务与技术的通用语言库,能够统一数据语义,消除歧义,支撑数据治理,并加速团队协作。文章详细介绍了词根的概念及其核心价值,词根是数据语义的最小单元,通过词根词库可以实现技术字段与业务术语的统一。此外,文章还阐述了数据字典的核心维度,包括词根词库的本质、分层分类、命名规范及冲突解决机制。建设方法论部分,提出了业务调研与术语收编、标准化处理四步法及自动化工具链增强等步骤。运营推广方面,建议通过分层培训体系、激励机制和动态迭代机制实现长效治理。最后,文章
2025-05-20 17:41:54
1074
原创 企业智慧业务中台规划建设与应用全景解析
《智慧业务中台规划建设与应用总体方案》旨在解决企业流程复杂、信息不畅、系统重复开发等问题,通过构建智慧化集中支撑体系,实现全局掌控、智能决策和快速响应。方案提出以互联网技术为基础,数据驱动为核心,打造运营决策集中化、前端营销敏捷化、业务支撑集中化的一体化体系。建设目标包括提供全流程支撑、智能化业务管理、集中化订单处理及闭环风险管控。总体建设思路强调引入互联网技术,构建前台、中台、后台的支撑体系,贯通营销、生产、决策全流程。业务中台设计注重共性能力抽象和三大支撑体系(智慧决策、敏捷营销、生产集中),数据中台设
2025-05-19 16:41:57
967
原创 流量曝光归因SQL优化实战:如何将曝光事件精准关联到最近一次启动?
随着移动互联网进入存量竞争时代,精细化运营成为企业核心战略,用户行为归因分析尤为关键。启动归因作为用户生命周期分析的起点,直接影响渠道评估、广告投放优化和产品迭代策略。本文通过两种典型的归因实现方案,剖析大数据场景下的核心解决思路。方案1基于ROW_NUMBER的关联归因,通过笛卡尔积和窗口函数筛选最近启动记录,但存在笛卡尔积风险和排序性能消耗问题。方案2基于LAST_VALUE的融合归因,通过合并启动与曝光事件流,单次扫描完成计算,复杂度更低,适用于数据量大、时效要求高的场景。未来可探索Flink状态计算
2025-05-19 08:30:00
73
原创 如何为大模型编写优雅且高效的提示词?
文章摘要:本文详细介绍了如何设计有效的提示词以优化AI模型的输出。首先,明确核心目标,使用具体任务替代抽象描述,并定义任务类型和输出格式。其次,采用结构化提示词设计,包括角色设定、背景信息、核心任务和输出约束。接着,探讨了语言技巧与原则,如使用主动语态和分层指令设计。进阶策略包括思维链引导和少样本学习。迭代优化方法涉及A/B测试和反馈循环机制。最后,通过示例对比和注意事项,强调了伦理边界和版权意识的重要性。文章还提供了通用模板,建议建立个人提示词库并持续迭代优化。
2025-05-16 14:24:04
958
原创 大模型在数据分析领域的研究综述
大模型(LLMs)在业务指标拆解中的应用日益广泛,尤其在金融、零售和制造业等领域展现了显著潜力。在金融行业,大模型通过增强模式识别能力,支持高频交易和欺诈检测,提升了预测准确性和风险管理效率。零售行业中,大模型驱动的动态定价和库存管理系统帮助企业实现销售增长和利润率提升。制造业则通过大模型优化质量控制,减少废品率并提高生产效率。然而,大模型的应用仍面临透明度不足、数据隐私和技术门槛等挑战。未来,企业需加强数据治理、提升模型可解释性,并探索跨行业协作,以充分发挥大模型在业务指标拆解中的潜力,推动智能化转型。
2025-05-16 10:17:25
1237
原创 经典问题争议:数仓分层建设中,DWD、DWS、ADS哪一层最难?
在数据仓库分层建设中,DWD(明细层)、DWS(汇总层)、ADS(应用层)的难度因业务场景、团队能力和系统复杂度而异,没有绝对的“最难”。但从业务耦合度、技术复杂度和长期维护成本等维度综合来看,DWD层通常是最核心、最复杂的部分。DWD层负责数据清洗、标准化和原子指标计算,构建面向业务过程的原子表,为上层提供高质量、可复用的明细数据。其难点在于对业务理解的深度要求、数据质量治理的复杂性、ETL开发与维护的高成本以及长期维护的压力。DWS层则基于DWD层数据,按主题构建轻度聚合表,提升查询效率,难点在于维度建
2025-05-15 09:00:00
63
原创 CIO必修课:如何让老板为数据治理买单?
一场失败的提案“王总,我们需要启动数据治理项目,否则系统会越来越乱……”“先等等,这项目要投200万?能带来多少收入?”CIO张明无奈离场,老板的质疑让他哑口无言。痛点共鸣:70%的数据治理项目因“无法证明业务价值”被毙掉!核心结论不谈技术,只谈钱——用老板的思维说服老板。
2025-05-14 09:00:00
405
原创 Dify大模型参数调节技术指南:从原理到实践
本文深入探讨了大语言模型(LLM)在文本生成和对话系统等应用中的关键参数调节策略。文章首先详细解析了温度(Temperature)、TopP、TopK等核心参数的作用机制及其在不同场景下的配置建议,如知识密集型、确定性、创意生成和对话系统场景。接着,提供了参数组合的黄金公式和调整小技巧,帮助开发者在保证生成质量的同时,实现多样性的精准控制。此外,文章还介绍了调试流程、常见问题解决方案及最佳实践建议,强调了参数调节的艺术与科学结合,并建议开发者建立参数实验记录制度,通过A/B测试不断优化配置方案。最后,文章指
2025-05-14 08:30:00
845
原创 球球 vs 懂车帝数仓岗位:数据资产沉淀主要是指DWS和ADS层的表吗?
数据资产的沉淀在企业数据仓库建设中至关重要,但常被误解为仅涉及DWS(数据仓库汇总层)和ADS(应用数据服务层)的表。数据资产应具备可控制、可量化、可复用、可管理四大特征,其沉淀需覆盖从ODS(原始数据层)到ADS的全链路。ODS层虽为原始数据,但通过治理可转化为资产;DWD层作为清洗后的原子数据,是高质量数据源的基础;DWS和ADS层则通过轻度汇总和服务化,直接驱动业务决策。反方观点认为,仅聚焦DWS和ADS层会忽视基础数据的基石作用和原始数据的潜在价值,导致全链路治理缺位。因此,数据资产沉淀应兼顾价值显
2025-05-13 09:00:00
64
原创 数据资产沉淀:不仅是DWS与ADS,揭秘企业数据价值化的全链路法则
本文探讨了数据资产沉淀的完整定义与技术架构,指出数据资产不仅仅是DWS/ADS层的表,而是全链路可复用的数据资源。文章通过“四层九维”模型详细剖析了数据分层架构和治理维度,并提出了跳出DWS/ADS陷阱的三个关键动作:夯实DWD层、建立数据资产目录、以用促治。此外,文章还展望了从“分层治理”到“数据Mesh”的未来演进方向,强调数据资产沉淀是一场需要全员参与的长期马拉松。通过系统化的治理和架构设计,数据资产可以从“成本负担”进化为“战略资产”。
2025-05-13 08:30:00
1574
数据既要保护又要利用.docx### 【数据安全与利用】数据既要保护又要利用:构建数据流通与安全基础设施、背景与政策
2025-06-02
【数据仓库建模】解决同名不同义指标难题的系统性治理方案:从数据模型设计到指标平台建设了企业在数据仓库
2025-05-28
### 【企业数字化与人工智能】2025企业数字与人工智能就绪度报告:战略协同、持续改进与技术投资的关键作用
2025-06-03
工单系统咨询表单反馈助手.yml
2025-05-29
【人工智能领域】基于Transformer的DeepSeek技术演进与前沿探索:大型语言模型及新一代智能体的设计与应用
2025-06-03
【智能体应用与发展】2025年中国智能体发展现状、挑战及路径建议:多领域应用与技术突破综述
2025-06-02
工单系统咨询助手.yml
2025-05-28
【银行业数字化转型】数据治理与管理知识体系在商业银行的应用:提升数据质量与智能风控
2025-05-25
【数据科学领域】构建数据分析师的底层逻辑:系统工程与思维培养-从知识地基到实践锤炼的全面指南
2025-06-04
医疗AI项目管理平台;许用户查看模型性能随时间的变化以及关键里程碑的影响
2025-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人