传送门:codeforces 895B
题目大意:
给出 n 个数,求一对下标 (i,j) 满足:在闭区间 [ a[i] ,a[j] ] 内恰有 k 个数是 x 的倍数。问满足条件的下标的对数有多少个。
思路:
首先想到的肯定是暴力枚举了,会超时,所以需要优化。由于是求对数,与数组元素的顺序无关,我们可以先将其排序。然后枚举每个元素,对于每个元素找其满足题意的区间内有多少个数,将其加到结果上。
例如,当前元素是 3, x=3,k=2,则要找的区间应该是 [ 6, 9 ), 也就是 3~6 、3~7、3~8 中 3的倍数都有 2 个,为 3和 6。
一般的,对于一个数 a,先找到小于它的离它最近的是 x 倍数的数 b,则左闭右开区间 [ b + k*x , b+(k+1)*x ) 就是要找的满足题意的区间。该区间即: [ (kk+a/x)*x , (kk+a/x+1)*x ) ,其中如果 a%x==0 则 kk=k-1,否则 kk=k。
当 k=0 时需要特判,因为 k-1 后为负数,会出错。如果当前元素 a 是 x 的倍数的话,则无论选择什么区间,至少有一个数满足题意,所以这时候要查找的值直接设为 a. 否则,查找的值设为 a/x+1 . 注意,也可能存在另一个数和当前数组成的区间内的数都不是 x 的倍数,我曾经在这WA了 n 次……
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int main()
{
LL i,n,k,x,a[100010];
LL p1,p2,kk,ans;
while(~scanf("%lld%lld%lld",&n,&x,&k))
{
for(i=0;i<n;i++) scanf("%lld",&a[i]);
sort(a,a+n);
if(k==0)
{ //如果 k=0
ans=0;
for(i=0;i<n;i++)
{
p1=lower_bound(a,a+n,a[i])-a;
LL val;
if(a[i]%x!=0) val=(a[i]/x+1)*x; //如果当前数不是 x的倍数
else val=a[i];
p2=lower_bound(a,a+n,val)-a;
ans+=p2-p1;
}
printf("%lld\n",ans);
}
else
{
ans=0;
for(i=0;i<n;i++)
{
if(a[i]%x==0) kk=k-1; //如果当前数是 x的倍数
else kk=k;
p1=lower_bound(a,a+n,(kk+a[i]/x)*x)-a; //二分搜索
p2=lower_bound(a,a+n,(kk+a[i]/x+1)*x)-a;
//printf("a=%lld b=%lld\n",(kk+a[i]/x)*x,(kk+a[i]/x+1)*x-1);
ans+=p2-p1;
}
printf("%lld\n",ans);
}
}
return 0;
}