Prim算法
1.概览
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点
2.算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
示例图演示:
下面对算法的图例描述:
图例 | 说明 | 不可选 | 可选 | 已选(Vnew) |
---|---|---|---|---|
此为原始的加权连通图。每条边一侧的数字代表其权值。 | - | - | - | |
顶点D被任意选为起始点。顶点A、B、E和F通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 | C, G | A, B, E, F | D | |
下一个顶点为距离D或A最近的顶点。B距D为9,距A为7,E为15,F为6。因此,F距D或A最近,因此将顶点F与相应边DF以高亮表示。 | C, G | B, E, F | A, D | |
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 | C | B, E, G | A, D, F | |
在当前情况下,可以在C、E与G间进行选择。C距B为8,E距B为7,G距F为11。E最近,因此将顶点E与相应边BE高亮表示。 | 无 | C, E, G | A, D, F, B | |
这里,可供选择的顶点只有C和G。C距E为5,G距E为9,故选取C,并与边EC一同高亮表示。 | 无 | C, G | A, D, F, B, E | |
顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG。 | 无 | G | A, D, F, B, E, C | |
现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 | 无 | 无 | A, D, F, B, E, C, G |
3.简单证明prim算法
反证法:假设prim生成的不是最小生成树
1).设prim生成的树为G0
2).假设存在Gmin使得cost(Gmin)<cost(G0) 则在Gmin中存在<u,v>不属于G0
3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)
4).这与prim每次生成最短边矛盾
5).故假设不成立,命题得证.
Kruskal算法
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
2.算法简单描述
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中
if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
添加这条边到图Graphnew中
示例图演示:
图例描述:
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
3.简单证明Kruskal算法
对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。
归纳基础:
n=1,显然能够找到最小生成树。
归纳过程:
假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。
我们证明T'+{<u,v>}是G的最小生成树。
用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。
由数学归纳法,Kruskal算法得证。
prim算法的例子:
import java.util.*;
/*
* 最小生成树(prim算法)
*/
public class 最小生成树 {
private static List<Vertex> visitedVertexs,leftedVertexs;
//分别为添加到集合U中的节点集和剩余集合中的节点集
private static List<Edge> searchEdges;
//初始化图的信息
public static void initGragh(Gragh g) {
visitedVertexs=new ArrayList<Vertex>();
leftedVertexs=new ArrayList<Vertex>();
searchEdges=new ArrayList<Edge>();
Scanner in=new Scanner(System.in);
System.out.println("输入顶点数:");
int vNum=in.nextInt();
System.out.println("输入边数:");
int eNum=in.nextInt();
String[] allVertex=new String[vNum];
String[] allEdge=new String[eNum];
Scanner sc=new Scanner(System.in);
//输入各个顶点
for(int i=0;i<vNum;i++) {
allVertex[i]=sc.nextLine();
}
//输入顶点的名称和权值
for(int i=0;i<eNum;i++) {
allEdge[i]=sc.nextLine();
}
g.vertex=new Vertex[allVertex.length];
g.edge=new Edge[allEdge.length];
g.minL=0;
for(int i=0;i<allVertex.length;i++) {
g.vertex[i]=new Vertex();
g.vertex[i].vName=allVertex[i];
leftedVertexs.add(g.vertex[i]); //初始化剩余点集合
}
for(int i=0;i<allEdge.length;i++) {
g.edge[i]=new Edge();
g.edge[i].stVertex=new Vertex();
g.edge[i].edVertex=new Vertex();
String edgeInfo[]=allEdge[i].split(" ");
g.edge[i].stVertex.vName=edgeInfo[0]; //对应边的起点
g.edge[i].edVertex.vName=edgeInfo[1]; //对应边的终点
g.edge[i].w=Integer.parseInt(edgeInfo[2]);//对应边的权值
}
}
public static void onChangeVertex(Vertex vertex) {
visitedVertexs.add(vertex); //添加初始节点作为默认的节点
leftedVertexs.remove(vertex);
}
public static Vertex findOneVertex(Gragh g) {
int minValue=Integer.MAX_VALUE;
Vertex findVertex=new Vertex();
Edge findEdge=new Edge();
for(int i=0;i<visitedVertexs.size();i++) {
for(int j=0;j<leftedVertexs.size();j++) {
Vertex v1=visitedVertexs.get(i);
Vertex v2=leftedVertexs.get(j); //获取两个顶点的名称
for(int k=0;k<g.edge.length;k++) {
String stName=g.edge[k].stVertex.vName;
String edName=g.edge[k].edVertex.vName;
if((v1.vName.equals(stName)&&v2.vName.equals(edName))
||(v1.vName.equals(edName))&&v2.vName.equals(stName)){
if(g.edge[k].w<minValue) {
findEdge=g.edge[k];
minValue=g.edge[k].w;
if(leftedVertexs.contains(v1)) {
findVertex=v1;
}else if(leftedVertexs.contains(v2)) {
findVertex=v2;
}
}
}
}
}
}
g.minL+=minValue;
searchEdges.add(findEdge);
return findVertex;
}
public static void prim(Gragh g) {
while(leftedVertexs.size()>0) { //直到剩余节点集为空是结束循环
Vertex findVertex=findOneVertex(g);
onChangeVertex(findVertex);
}
System.out.print("\n最短路径中包含的边:");
for(int i=0;i<searchEdges.size();i++) {
System.out.print(" "+searchEdges.get(i).stVertex.vName+","
+searchEdges.get(i).edVertex.vName+" ");
}
System.out.print("\n最短路径长度:"+g.minL);
}
public static void main(String[] args) {
Gragh g=new Gragh();
initGragh(g);
onChangeVertex(g.vertex[0]);
prim(g);
}
}
/*
* 顶点类
*/
class Vertex {
String vName;
public boolean equals(Object obj) {
if(obj instanceof Vertex) {
Vertex vertex=(Vertex)obj;
return this.vName.equals(vertex.vName);
}
return super.equals(obj);
}
}
/*
* 边类
*/
class Edge{
Vertex stVertex;
Vertex edVertex;
int w; //权值
}
/*
* 图的存储结构
*/
class Gragh{
Vertex[] vertex;//顶点集
Edge[] edge; //边集
int minL; //最短路径