Kruskal算法和Prim算法
在无向图中,连通且不含圈的图称为树。给定一个无向图G=(V,E),连通G中所有点,且边集使E的子集的树称为G的生成树,其中权值最小的生成树称为最小生成树(MST)。构造MST的算法有很多,最常见的即是Kruskal算法和Prim算法。
Kruskal算法
我直接看书,看了一堆坑出来,查资料发现实际上还是听简单的(就处理而言),书上省略的太多了。
Kruskal算法的第一步是将所有边按照权值从小到大的顺序排列,接下来从小到大依次考察每条边(u,v):
情况1:u和v在同一个连通分量,那么加入(u,v)后会形成环,因此不能选择。
这一点就说的特别迷,如果u和v不在同一个连通分量,那他们不是都不相连,又怎么是一条边?
事实上,我们在考察之前是要对连通分量初始化的,相当于对整个图重构,每个点独立出来构成一个独立的连通分量。相当于在考察的过程中,将初始化后的图重构成最小生成树。
如果u和v在同一个连通分量,也就是说当前u和v存在一条路径可以使u和v互通,如果此时在u和v之间再连一条边(路径),那么u和v中存在两条不同路径,即构成了一个环。
情况2:如果u和v在不同的连通分量,那么加入(u,v)一定是最优的。
如果不加入(u,v)也能得到一个最优解T,那么T+(u,v)一定有且只有一个环,由于在情况2时加入(u,v)生成树中不生成环,那么这个环中一定至少存在一条边的权值大于或等于(u,v)的权值。删除该边后,加上(u,v)得到的解一定不会比T差。
如果还是不理解的话,我在别人的博客找到了一个模拟的图文过程:
对下面这个图进行Kruskal算法:
对边进行排序,选取边AD加入MST:
剩余的边中CE最小,于是加入CE:
不断重复上述过程,就可以得到最小生成树:
选自博客:最小生成树之Kruskal算法
于是有伪代码:
将所有边排序,记第i小的边为e[i]
初始化MST为空,初始化连通分量,让每个图自成一个独立的连通分量
for (int i=0;i<m;i++){
if (e[i].u和e[i].v不在同一个连通分量){
将边e[i]加入MST
合并e[i].u和e[i].v所在的连通分量
}
}
接下来问题的关键就在于如何快速地