Kruskal算法和Prim算法

本文介绍了Kruskal算法和Prim算法在构造无向图最小生成树中的应用。Kruskal算法通过边的权值排序,避免形成环来构建MST;Prim算法则从点出发,逐步拓展生成树。并查集用于优化Kruskal算法中的连通分量查询与合并。Prim算法中,使用堆优化可以降低时间复杂度。
摘要由CSDN通过智能技术生成

Kruskal算法和Prim算法

在无向图中,连通且不含圈的图称为树。给定一个无向图G=(V,E),连通G中所有点,且边集使E的子集的树称为G的生成树,其中权值最小的生成树称为最小生成树(MST)。构造MST的算法有很多,最常见的即是Kruskal算法和Prim算法。


Kruskal算法

我直接看书,看了一堆坑出来,查资料发现实际上还是听简单的(就处理而言),书上省略的太多了。

Kruskal算法的第一步是将所有边按照权值从小到大的顺序排列,接下来从小到大依次考察每条边(u,v):

情况1:u和v在同一个连通分量,那么加入(u,v)后会形成环,因此不能选择。

这一点就说的特别迷,如果u和v不在同一个连通分量,那他们不是都不相连,又怎么是一条边?

事实上,我们在考察之前是要对连通分量初始化的,相当于对整个图重构,每个点独立出来构成一个独立的连通分量。相当于在考察的过程中,将初始化后的图重构成最小生成树。

如果u和v在同一个连通分量,也就是说当前u和v存在一条路径可以使u和v互通,如果此时在u和v之间再连一条边(路径),那么u和v中存在两条不同路径,即构成了一个环。

情况2:如果u和v在不同的连通分量,那么加入(u,v)一定是最优的。

如果不加入(u,v)也能得到一个最优解T,那么T+(u,v)一定有且只有一个环,由于在情况2时加入(u,v)生成树中不生成环,那么这个环中一定至少存在一条边的权值大于或等于(u,v)的权值。删除该边后,加上(u,v)得到的解一定不会比T差。

如果还是不理解的话,我在别人的博客找到了一个模拟的图文过程:

在这里插入图片描述
对下面这个图进行Kruskal算法:

在这里插入图片描述
对边进行排序,选取边AD加入MST:

在这里插入图片描述
剩余的边中CE最小,于是加入CE:

在这里插入图片描述
不断重复上述过程,就可以得到最小生成树:

在这里插入图片描述

选自博客:最小生成树之Kruskal算法

于是有伪代码:

将所有边排序,记第i小的边为e[i]
初始化MST为空,初始化连通分量,让每个图自成一个独立的连通分量
for (int i=0;i<m;i++){
   
	if (e[i].u和e[i].v不在同一个连通分量){
   
		将边e[i]加入MST
		合并e[i].u和e[i].v所在的连通分量 
	}
} 

接下来问题的关键就在于如何快速地

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值