P1040 加分二叉树 https://www.luogu.org/problemnew/show/1040
题目描述
设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。
若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;
(1)tree的最高加分
(2)tree的前序遍历
输入输出格式
输入格式:
第1行:一个整数n(n<30),为节点个数。
第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
输出格式:
第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。
第2行:n个用空格隔开的整数,为该树的前序遍历。
分析:
1.结合问题,如果整棵树的权值最大,必然有左子树的权值最大,右子树的权值也最大,符合最优性原理。
可以用区间动规模型解决。可得到状态转移方程:f[i][j]=max((f[i][k-1]*f[i+1][j]+f[k][k]),f[i][j]); 由此可以得出最高加分。
2.输出该树的前序遍历的序列,首先是要构建这个树。题目中所给的是二叉树的中序遍历的序列,根据二叉树的特性建立树,只要边动规
边记录root[i][j]=k,k即i,j之间的根节点。最后根据前序遍历的规则输出相应序列即可。
import java.util.*;
public class 加分二叉树 {
static int n;
static int[][] f=new int[35][35]; //记录每个节点的分数
static int[][] root=new int[35][35];//root[a][b],表示a,b之间的根节点编号
public static int get_max(int l,int r) {
//如果是空树
if(l>r)
return 1;
//如果树不空
if(f[l][r]==0) {
//遍历左右节和根节点,得出加分值
for(int i=l;i<=r;i++) {
int t=f[l][r];
//得到最大加分值
f[l][r]=Math.max((get_max(l,i-1)*get_max(i+1,r)+f[i][i]),f[l][r]);
if(t<f[l][r])
root[l][r]=i;
}
}
return f[l][r];
}
public static void dfs(int l,int r) {
if(l>r)
return;
else {
System.out.print(root[l][r]+" ");
dfs(l,root[l][r]-1);
dfs(root[l][r]+1,r);
}
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
n=in.nextInt();
for(int i=1;i<=n;i++) {
f[i][i]=in.nextInt();
root[i][i]=i;
}
System.out.println(get_max(1,n));
dfs(1,n);
}
}