图的着色问题
时间限制: 1 Sec 内存限制: 128 MB提交: 1 解决: 1
[提交][状态][讨论版]
题目描述
给定无向连通图G=(V, E)和m种不同的颜色,用这些颜色为图G的各顶点着色,每个顶点着一种颜色。是否有一种着色法使G中相邻的两个顶点有不同的颜色?
这个问题是图的m可着色判定问题。若一个图最少需要m种颜色才能使图中每条边连接的两个顶点着不同颜色,则称这个数m为该图的色数。求一个图的色数m的问题称为图的m可着色优化问题。
编程计算:给定图G=(V, E)和m种不同的颜色,找出所有不同的着色法和着色总数。
输入
第一行是顶点的个数n(2≤n≤10),边数k,颜色数m(1≤m≤n)。
接下来是顶点之间的相互关系:a b
表示a和b相邻。
输出
输出着色方案总数。
样例输入
5 8 4
1 3
1 2
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
48
import java.util.*;
public class 图的着色 {
static int v,e,c,sum=0;; //定点数、边数、颜色数
static int[][] graph=new int[100][100]; //记录无向图的顶点
static int[] color=new int[100]; //记录颜色
public static boolean ok(int k) {
for(int i=1;i<=v;i++) {
if(graph[k][i]==1&&color[i]==color[k])
return false;
}
return true;
}
public static void backstrack(int t) {
if(t>v){
sum++;
return;
}
for(int i=1;i<=c;i++) {
color[t]=i;
if(ok(t))
backstrack(t+1);
color[t]=0;
}
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int x,y;
v=in.nextInt();
e=in.nextInt();
c=in.nextInt();
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
graph[i][j]=0;
for(int i=1;i<=e;i++) {
x=in.nextInt();
y=in.nextInt();
graph[x][y]=1;
graph[y][x]=1;
}
for(int i=0;i<=v;i++)
color[i]=0;
backstrack(1);
System.out.println(sum);
}
}