GIS中的深度学习与其应用

目录

摘要

1.研究背景

2.GIS与深度学习相结合在智能交通中的应用

2.1交通标志的识别与分类检测

2.2遥感图像信息提取

2.3从历史地图中提取历史道路数据

 3.GIS与深度学习相结合在环境风险评估中的应用

3.1在地震风险评估中的应用

3.2洪水敏感性评估中的应用 

3.3 POI空间风险预测与优化分析

4、结论


摘要

        作为机器学习中很重要的一个分支,深度学习的应用在近20年有了爆发式的增长,深度学习算法也在提出的同时不断被完善,在具体的应用层面上得到了很多发展。GIS是控件地理信息系统的简称,它以地理空间为基础,采用地理模型分析方法,实时提供多种空间和动态的地理信息,是一种为地理研究和地理决策服务的计算机技术系统。近些年来深度学习与GIS相结合应用到许多领域中,例如在智能交通中的图像识别、语义分割,智能驾驶中的决策、感知,环境中的灾难监测预测等。证实了深度学习与GIS的结合是一个十分有潜力的方向。

关键词: 深度学习 神经网络 GIS 图像识别 算法

1.研究背景

        机器学习是人工智能的一个分支,在近十年来,机器学习工具一直是GIS空间分析的核心组件,例如通过聚类来丰富数据或对空间关系进行建模。机器学习算法来处理结构化数据以解决问题。计算机视觉或者计算机从数字图像或视频中获取理解的能力这一领域已经从传统机器学习算法转变为深度学习方法。深度学习以神经网络的形式使用多层算法,通过不同的网络层来分析输入数据,每一层都定义数据中的特定要素和模式,在深度网络的规模和精度有所提高的同时,它们可以解决的任务也日益复杂,深度学习在图像识别、自然语言处理、语义分割等场所效果极为显著。深度学习在图像的多尺度和多层次特征提取以及从低层次到高层次的特征组合方面具有很大的优势,在图像处理和分类问题中表现出优异的性能。

        作为遥感的子系统,地理信息系统(GIS)以海量数据为支撑,服务于交通、环保、水利、国土、农业等领域,但测绘、摄影测量、遥感影像等领域对图像处理有较大的需求,但传统的图像处理和识别方法工作量较大并且部分信息会丢失, 造成工作效率低下,人工处理成本高。通过深度学习可以高效处理数据的采集、图像的分析和信息的分类,赋能地理信息产业。本文讨论了深度学习与GIS相结合来解决智能交通、灾害预测中的一系列难题。

2.GIS与深度学习相结合在智能交通中的应用

2.1交通标志的识别与分类检测

        街道交通标志基础设施是交通中十分重要的指示标志,由于其多样的物理结构和地理分布,对某些交通标志来说,其在识别与检测方面具有很大的困难性,这对驾驶员造成了不小的困惑。谷歌街景图像(GSV)是世界上地理范围最广、包含数据最丰富的街景图像数据库,其中包含种类丰富且海量的交通标志图像,其可以作为深度学习天然的训练测试数据集。地理信息系统(GIS)允许以便捷快速的方式在整个路网中定位远景图像位置。

        深度学习神经网络中的卷积神经网络(CNN)在网格类数据处理方面具有十分优越的性能。SSD Mobile Net架构由于其单前馈卷积网络的结构有轻量级计算性,其计算能力比标准卷积神经网络低八到九倍,但精度仅略有降低;使用最大池化对CNN阶段提取的特征进行降采样,并逐步减少表示的空间大小,以减少网络中的参数和计算数量,进而控制过度拟合;

        基于CNN的图像检测和分类技术为谷歌街景(GSV)图像捕获的街道标志提供了自动标注和检测的方法。为了帮助监控和维护交通资产,使用GIS通过利用谷歌街景API建立一个用于检测GSV图像上的交通标志的自动化系统。

图1:构建和训练检测街道标志的深度学习模型框架

        用Google街景图像作为模型的训练与测试数据,由于图像的拍摄日期与拍摄时间等各种因素的影响,相同的标志可能有不同的检测结果。深度学习模型需要克服照明差异,位置方差和旋转方差的街道标识,同时拥有能够区分街道的象形图和包含在商店正面,卡车边,广告牌,和其他预期的图像噪声,考虑到输出检测到的边界框坐标,采用摄影测量的方法计算每个检测到的标志在二维地理空间中的近似位置。新定位和分类的街道标志可以与相关空间数据相结合,以实施到资产管理系统中。深度学习数据集的许多问题在于其组成对象难以判别,但其结合GIS表明,属性过滤和进一步的空间分析是捕获有目的的路标图像的最有效和的方法之一,能高效地识别不同状态下的路标图像。

        基于深度学习方法,结合GIS和谷歌街景API的框架可以很好地完成交通标志的识别与分类检测任务,该框架扩展到任何级别、任何路段的路标分类任务中。在研究区域的道路网络上进行的实验记录了95.63%的检测准确率和97.82%的分类准确率。

2.2遥感图像信息提取

        随着地理信息系统和遥感技术的快速发展,人类获取空间数据的能力已经大大提高。遥感技术在地面观测平台和传感器技术方面的进展尤为突出。在同一区域获取多时间数据的能力不断提高,数据带的数量不断增加,形成了用于地面观测的多级分辨率图像金字塔系统。高分辨率遥感图像极大地拓宽了遥感技术的应用范围,并对遥感图像处理技术提出了更高的要求,用来满足精细化、精确化和语义化遥感信息提取的需求。其中,分类技术是数据挖掘领域中最重要的技术之一,是研究历史最悠久、研究领域更深入的技术。基于卷积神经网络的孪生结构具有非常好的图像匹配和配准应用,其在度量空间中的分类能力被广泛用于目标跟踪。

        有学者开发出了基于多分类器组合和深度学习算法的面向对象遥感图像信息提取方法,该算法使用Image Net对模型进行预训练,微调跟踪过程将模型迁移到目标域。跟踪任务中缺少训练数据的问题。使用聚类树结构的分裂机制来保留具有多样性的外观模型,并通过集成学习集成策略协作预测目标位置。

        将提取遥感图像信息的深度学习算法分为离线预训练和在线微调两个阶段,在离线预训练阶段,该算法训练CNN的目的是学习一般目标特征,将目标与其他对象区分开来。在初始状态下,样本空间中的每个样本都属于一个类别,随着尺度空间维度增大,样本被聚类彼此融合,直到最后所有样本都被分类为焦点,形成一个随尺度树变化的聚类,并添加后验判断条件进行条件选择,从而使分类规则趋于最优。由于在生成过程中点集之间不断融合,并且不断丢弃无效节点,因此聚类树被分配到顶层,操作速度也不断提高。

        利用PGF滤波器对遥感图像进行预处理,滤除高分辨率遥感图像中的噪声,然后利用基于网格梯度图像的分水岭算法对初始区域进行分割,然后利用形状特征和光谱特征相结合的均匀性。区域增长算法生成目标尺度的面向对象遥感区域。该方法充分利用了高分辨率遥感图像中的形状信息和纹理信息,有效地提取了特定尺度的均匀区域。

2.3从历史地图中提取历史道路数据

        作为历史地理信息的主要数据来源,历史地图包含丰富的特征,如地名、道路网络、铁路、建筑、植被等,然而,历史地图质量较差,由于不准确的测量和复制技术或化学和物理退化(例如漂白、纸张变形)等因素会造成地图信息不同程度的缺失。此外,扫描过程可能会导致模糊和颜色混淆。此类质量差的问题使得历史地图处理具有挑战性。作为一种重要的典型的人为特征,历史道路网络在许多领域发挥着关键作用,如道路网络分析、空间数据整合和城市蔓延调查等。

        有学者将彩色图像分割(CIS)技术应用于基于地图颜色层的道路提取。然而由于扫描地图的质量缺陷,不同地图系列甚至同一地图系列中的颜色并不完全相同,CIS仍然缺乏通用性。

        近些年有学者提出了一种新的方法来自动高效地生成大量训练数据,这些数据用于通过深度神经网络从历史地图中提取道路。考虑到当代地理空间矢量数据易于访问,用历史地图上相应特征的符号来表示当代矢量数据(例如,道路、铁路、建筑物),以自动生成训练数据。

 

 图2:符号重建自动生成训练数据流程

        通过符号重建来自动生成训练数据,使用ArcGIS重建Siegfried地图上的符号,通过用相应的光栅化表示的符号表示当代矢量数据,建立具有与Siegfried地图相同的空间参考的模拟地图。

        道路分割模型基于U-Net进行开发,U-Net是一种典型的CNN架构,其架构如图3所示。为了避免数据不平衡问题,我们采用随机采样的策略,采样点随机沿道路线产生,在远离道路线或道路线稀疏的区域中生成“负”采样点。以采样点为中心的固定尺寸图像作为训练样本数据。

        在四种不同的训练场景下训练模型来比较训练模型的性能,其分别是(1)仅使用真实地图(原始Siegfried地图)进行训练。(2)使用真实地图(Siegfried地图的黑色层)进行训练(3)仅使用模拟地图进行训练。(4)使用真实和模拟的混合地图进行训练。

图3:基于U-Net的道路分割模型

        符号重建自动生成训练数据的新方法在训练深度CNN模型中表现出了很好的性能和精度,通过四种不同场景的训练可以以验证该方法可以在某些度量(例如正确性)和人工生成的训练数据很少的情况下实现卓越的预测性能。同时因容易访问现代矢量数据,该方法的泛化性也十分出众(例如,铁路、水文特征、植被)和任何其他光栅地图系列。

 3.GIS与深度学习相结合在环境风险评估中的应用

3.1在地震风险评估中的应用

        地震危险性评估是一个重要的研究课题,它集中于世界上几个国家的概率地震危险性评价(PSHA)。自PSHA评估成立以来,在加强其开发方法方面经常面临新的挑战,氡浓度变化可被视为地壳构造扰动的证据,并可作为未来地震的前兆,基于土壤中氡和钍浓度的变化,部分学者采用多元回归的方法根据前兆预测了地震。

        机器学习技术目前在地震研究中逐渐开始得到应用,使用深度学习对印度次大陆进行了地震概率评估。有学者在印度实施了用于地震概率估计的递归神经网络(RNN)。Alimoradi等人使用机器学习技术分析了地面运动,并取得了优异的结果,实施了用于大推力地震灾害评估的多变量机器学习方法。此外,许多机器学习方法已用于岩土工程应用,如滑坡敏感性图、地下水泉水潜力图和其他环境应用。

        基于以上研究,Jena等人开发了卷积神经网络(CNN)模型用于印度东北部的地震概率评估。然后使用层次分析法(AHP)、Venn的危险交叉理论和风险映射的集成模型进行脆弱性分析。进行了分类任务的预测,然后将预测分类结果和强度变化分别用于概率绘图和危险绘图。最后通过将灾害、脆弱性和应对能力相乘,生成了地震风险图。脆弱性是通过使用六个脆弱因素来反映得出,应对能力是通过医院数量和相关变量,例如于灾害管理的预算等来估计的。所提出的集成模型的优点和缺点涉及实现、应用程序类型和数据质量。该区域地震研究使用了CNN模型和多标准评估的技术,可以提供详细而准确的风险结果。最终生成的地震风险图如图4所示:

图4:印度北部地震风险图

        该模型通过CNN和GIS为概率、危害、脆弱性和风险评估的每个组成部分提供选择必要标准的知识。将AHP方法应用于脆弱性评估,基于多准则决策过程对准则进行排序有效地计算权重。该模型存在一定的缺点,例如CNN模型需要大量数据点来有效研究地震概率分布。为概率映射选择合适的参数也同样至关重要,否则可能导致结果与真实情况有很大偏差。AHP方法仅限于7(±2)数量的幻数,并且存在一致性问题,因此脆弱性评估不能涉及七项以上的标准。

        该研究提供了地震预测和概率评估的有效的方法,采用概率、危害、脆弱性、应对能力和风险映射建立了评估预测框架,规划人员、管理人员和决策者可以使用开发的模型进行预防和缓解,以最大限度地减少未来风险的预期损失。

3.2洪水敏感性评估中的应用 

        每年,世界许多地区都会受到与水资源过剩有关的自然灾害的影响。在所有类型的自然灾害中,洪水是造成最大经济损失和死亡的风险现象。可以注意到,在全球范围内,这些危害每年影响约2亿人。由于全球气候变化,过去几十年记录的此类灾害数量有所增加。因此高精度识别洪水风险区非常重要。所有旨在减轻洪水影响的措施都应基于先前确定的易受洪水风险影响的地区。因此高精度洪水敏感性图可被视为非结构性措施,应在洪水风险管理中予以考虑。

        近些年来针对洪水敏感性评估主题的研究论文数量大幅增加。随着关于这一主题的论文数量的增加,用于评估洪水敏感性的空间变异性的模型也变得多样化。因此,大量论文基于双变量统计方法,如:证据权重、频率比、熵指数、确定性因子、证据信念函数和统计指数。在为此类研究开发的方法中,算法也发挥着重要作用,如:人工神经网络、支持向量机、分类和回归树、随机森林、Naive Bayes、旋转森林、自适应神经模糊推理系统或深度学习神经网络等。在这些类型的模型中,都使用独立变量或洪水预报器作为预测结果。评估模型性能和验证结果的可能性是这些洪水敏感性评估方法的一个非常重要的特点。过去的研究使用多种技术和算法计算或模拟了洪水敏感性图或模型。洪水敏感性已通过应用各种统计和机器学习方法进行预测。然而,仅使用独立算法评估洪水敏感性的结果存在局限性和缺点。由于数据表现不佳,独立模型通常无法识别假设空间中的最佳拟合函数或样本集的真实分布。

        有学者使用3种新的集成算法来估计罗马尼亚受影响严重地区的洪水敏感性,这些算法分别为:迭代分类器优化器-交替决策树-频率比(ICO-ADT-FR),迭代分类器优化器–深度学习神经网络–频率比(ICO-DLNN-FR)和迭代分类器优化器-多层感知器–频率比(ICO-MLP-FR)。迭代分类优化器(ICO)这样的优化算法可以提高三个机器学习模型在洪水敏感性评估方面的性能。

图5:方法流程图

        该算法能够计算洪水预报器位置与洪水调节因子特征之间的空间关系。模型的第一阶段包括收集和处理本研究所需的地理数据库。地理数据库包括14个洪水预报器和132个已知洪水位置,采用70%的数据作为训练集,30%的数据作为验证集。使用基于相关性的特征选择(CFS)方法来评估14个预测因子在洪水敏感性估计方面的预测能力。第二部分是将训练好的模型用于验证,通过几个统计指标与ROC曲线来评估模型的性能和准确性。根据ROC曲线来看,AUC值高于0.89,证明所有的模型都取得了良好的性能。其中ICO-DLNN-FR模型的准确率最高,为AUC=0.959。该项研究结果可用于指导指定区域未来的洪水风险管理和可持续土地利用规划。

3.3 POI空间风险预测与优化分析

        疾病暴发与许多风险因素相关,目前,从流行病学角度研究冠状肺炎的大多数方法都是基于经典的统计分析,空间信息往往没有得到有效利用。然而,随着人工智能(AI)的日益普及和计算能力的相应提高,目前可用的技术允许预测疫情,从而实现更有效的疫情防控。

        基于空间数据开发回归模型以预测疾病暴发的地理趋势是研究的主要途径之一。有学者利用截至2020年6月的中国新冠肺炎疫情数据,开发并训练了一个logistic模型—一个基于机器学习的时间序列预测模型—预测新冠的疫情趋势。对确诊病例的验证表明,该模型的预测相对准确,但在出现奥密克戎等变异毒株之后该模型的预测正确率有所下降。有学者使用随机森林(RF)算法结合机器学习理论,提出了一种基于邻近回归的短期预测模型,用来分析美国疫情暴发和滞后疫情信息的特征。该模型不仅仅为复杂的贝叶斯模型,基于疫情的前3-4天的疫情数据并成功地预测了疾病发病率,这有助于分析俄亥俄州疫情,还可以在适当的指导下分析当地规模的疫情。

        有学者提出了一种基于图像的神经网络来研究城市空间发病率与城市设施设计之间的关系,并预测和验证各种城市流行风险因素之间的协方差及其对新冠肺炎城市疫情的影响并构建了一套相对完整的算法过程,可能适用于其他类型的空间研究。其过程如下:(1)通过核密度分析和地质统计学插值建立准确的城市暴发发病率样本。(2)通过皮尔逊分析和灰色关联分析,探讨城市疫情传播风险与空间环境因素的相关机制。(3)以武汉疫情为例进行模拟和验证。(4) 通过使用开源数据和Generative测试各种输入和模型类型。

        选择了GAN网络模型来适应空间图像生成的特点,从地理多样性设施的角度分析中国城市和直辖市新冠疫情的分布,整合分析框架,以及通过皮尔逊相关指标的空间风险因素分布。可以使用多个大数据源进一步改进分析框架,以研究疫情的空间和时间特征。该框架结合了可视化方法、相关性分析、空间插值模型和机器学习技术。它也可以扩展到空间流行病学研究的其他领域。

4、结论

        深度学习在很多领域内的应用才只是刚刚起步,随着对规律的一步步探索,为了解决不同领域的问题,越来越多的模型与算法被提出。深度学习在地理学中得到了广泛的应用,在遥感监测、GIS的应用、空间物体检测等领域中广为应用。地理学所具有得天独厚的优势便是拥有海量数据,这一点完美地契合了深度学习网络的要求,数据越丰富,神经网络算法越精确、约贴近实际。在实际问题中还有很多层面可以使用到深度学习,这些具有潜力的应用等待被挖掘。

创作不易,希望大家多多点赞

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值