hive

1.Hive

Hive 是建立在 Hadoop   上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载( ETL ),这是一种可以存储、查询和分析存储在 Hadoop   中的大规模数据的机制。 Hive 定义了简单的类 SQL  查询语言,称为 QL ,它允许熟悉 SQL  的用户查询数据。同时,这个语言也允许熟悉 MapReduce   开发者的开发自定义的 mapper   reducer  来处理内建的 mapper reducer  无法完成的复杂的分析工作。

1.1在hadoop生态圈中属于数据仓库的角色。他能够管理hadoop中的数据,同时可以查询hadoop中的数据。

  本质上讲,hive是一个SQL解析引擎。Hive可以把SQL查询转换为MapReduce中的job来运行。
  hive有一套映射工具,可以把SQL转换为MapReduce中的job,可以把SQL中的表、字段转换为HDFS中的文件(夹)以及文件中的列。

  这套映射工具称之为metastore,一般存放在derby、mysql中。

Hive SQL 解析引擎,它将 SQL 语句转译成 M/RJob 然后在 Hadoop 执行。
Hive 的表其实就是 HDFS 的目录,按表名把文件夹分开。如果是分区表,则分区值是子文件夹,可以直接在 M/RJob 里使用这些数据。

1.2 hive在hdfs中的默认位置是/user/hive/warehouse,是由配置文件hive-conf.xml中属性hive.metastore.warehouse.dir决定的。



用户接口,包括CLIJDBC/ODBCWebUI

元数据存储,通常是存储在关系数据库如mysql, derby

解释器、编译器、优化器、执行器

Hadoop:用 HDFS进行存储,利用 MapReduce进行计算

用户接口主要有三个: CLI JDBC/ODBC WebUI
1. CLI ,即 Shell 命令行
2. JDBC/ODBC Hive Java ,与使用传统数据库 JDBC 的方式类似
3. WebGUI 是通过浏览器访问 Hive
Hive 将元数据存储在数据库中 ( metastore ) ,目前只支持 mysql derby Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等
解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划( plan )的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行
Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含* 的查询,比如 select * from table 不会生成 MapRedcue 任务)


2.hive的安装

  (1)解压缩、重命名、设置环境变量

把hive-0.9.0.tar.gz复制到/usr/local
解压hive-0.9.0.tar.gz与重命名

#cd /usr/local

#tar -zxvfhive-0.9.0.tar.gz

#mv hive-0.9.0 hive

修改/etc/profile文件。

#vi /etc/profile

增加

export HIVE_HOME=/usr/local/hive

修改

exportPATH=$JAVA_HOME/bin:$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin

保存退出

#source /etc/profile


  (2)在目录$HIVE_HOME/conf/下,执行命令mv hive-default.xml.template  hive-site.xml重命名
     在目录$HIVE_HOME/conf/下,执行命令mv hive-env.sh.template  hive-env.sh重命名
  (3)修改hadoop的配置文件hadoop-env.sh,修改内容如下:
     export HADOOP_CLASSPATH=.:$CLASSPATH:$HADOOP_CLASSPATH:$HADOOP_HOME/bin
  (4)在目录$HIVE_HOME/bin下面,修改文件hive-config.sh,增加以下内容:
     export JAVA_HOME=/usr/local/jdk
     export HIVE_HOME=/usr/local/hive

     export HADOOP_HOME=/usr/local/hadoop

启动

#hive

hive>show tables;

hive>create table test(id int,name string);

hive>quit;

观察:#hadoopfs -ls/user/hive

参数:hive.metastore.warehouse.dir


Hive的metastore

metastore是hive元数据的集中存放地。metastore默认使用内嵌的derby数据库作为存储引擎
Derby引擎的缺点:一次只能打开一个会话
使用Mysql作为外置存储引擎,多用户同时访问


3.安装mysql

   
     查看mysql  rmp -qa |grep mysql
  (1)删除linux上已经安装的mysql相关库信息。rpm  -e  xxxxxxx   --nodeps
     执行命令rpm -qa |grep mysql 检查是否删除干净
  (2)执行命令 rpm -i   mysql-server-********  安装mysql服务端    
  (3)启动mysql 服务端,执行命令  mysqld_safe &
  (4)执行命令 rpm -i   mysql-client-********  安装mysql客户端
  (5)执行命令mysql_secure_installation设置root用户密码
4. 使用mysql作为hive的metastore
  (1)把mysql的jdbc驱动放置到hive的lib目录下
  (2)修改hive-site.xml文件,修改内容如下:  
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop0:3306/hive?createDatabaseIfNotExist=true</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>admin</value>
    </property>
     
   mysql中操作
      设置权限
      grant all on hive.* to 'root'@'%' identified by 'admin';
      刷新

      flush privileges;



Hive运行模式

Hive的运行模式即任务的执行环境
分为本地与集群两种

我们可以通过mapred.job.tracker 来指明

设置方式:

hive > SET mapred.job.tracker=local;


Hive 的启动方式

1 hive 命令行模式,直接输入 #/hive/bin/hive 的执行程序,或者输入 #hive --service cli
2 hive web 界面的 ( 端口号 9999) 启动方式

#hive --service hwi &

用于通过浏览器来访问hive

http://hadoop0:9999/hwi/

3 hive 远程服务 ( 端口号 10000) 启动方式

#hive --service hiveserver &

Hive与传统数据库

查询语言

HiveQL

SQL

数据存储位置

HDFS

Raw Device or 本地FS

数据格式

用户定义

系统决定

数据更新

不支持

支持

索引

新版本有,但弱

执行

MapReduce

Executor

执行延迟

可扩展性

数据规模


Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定

义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行

分隔符 (”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式

TextFileSequenceFile以及 RCFile)。由于在加载数据的过程中,不需要从用

用户数据格式到 Hive定义的数据格式的转换,因此,Hive 在加载的过程中不会对数

据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而

在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据

都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。


Hive的数据类型

基本数据类型

tinyint/smallint/int/bigint

float/double

boolean

string

复杂数据类型

Array/Map/Struct

没有 date/ datetime


Hive的数据存储

Hive 的数据存储基于 Hadoop HDFS
Hive 没有专门的数据存储格式
存储结构主要包括: 数据库、文件、表、视图
Hive 默认可以直接加载文本文件( TextFile ),还支持 sequence file
创建表时,指定 Hive 数据的列分隔符与行分隔符, Hive 即可解析数据


Hive的数据模型-数据库

类似传统数据库的 DataBase
默认数据库 "default"

使用#hive命令后,不使用hive>use <数据库名>,系统默认的数据库。可以显式使用hive> use default;

创建一个新库

hive > create database test_dw;

Hive的数据模型-

Table 内部表
与数据库中的 Table 在概念上是类似
每一个 Table Hive 中都有一个相应的目录存储数据。例如,一个表 test ,它在 HDFS 中的路径为: / warehouse/test warehouse 是在 hive-site.xml 中由 ${ hive.metastore.warehouse.dir } 指定的数据仓库的目录
所有的 Table 数据(不包括 External Table )都保存在这个目录中。
删除表时,元数据与数据都会被删除

创建数据文件inner_table.dat
创建表

hive>create tableinner_table (key string);

加载数据

hive>load data localinpath '/root/inner_table.dat' into table inner_table;

查看数据

select * from inner_table

select count(*) frominner_table

删除表drop table inner_table

删除表时可能报错max key length is 1000 bytes

把mysql的数据库字符类型改为latin1



Partition  分区表
Partition 对应于数据库的 Partition 列的密集索引
Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中

例如:test表中包含date city 两个 Partition

则对应于date=20130201,city = bjHDFS 子目录为:

/warehouse/test/date=20130201/city=bj

对应于date=20130202,city=shHDFS 子目录为;

/warehouse/test/date=20130202/city=sh

一些相关命令

SHOW   TABLES; # 查看所有的表

SHOW   TABLES'*TMP*'; #支持模糊查询

SHOW  PARTITIONSTMP_TABLE; #查看表有哪些分区

DESCRIBE  TMP_TABLE; #查看表结构


创建数据文件 partition_table.dat
创建表

create table partition_table(rectimestring,msisdn string) partitionedby(daytime string,citystring) row format delimited fields terminated by '\t' stored as TEXTFILE;

加载数据到分区

load data local inpath'/home/partition_table.dat' into table partition_table partition (daytime='2013-02-01',city='bj');

查看数据

select * from partition_table

select count(*) from partition_table

删除表 drop table partition_table


alter table partition_table add partition (daytime='2013-02-04',city=' bj ');

通过loaddata 加载数据

alter table partition_table drop partition (daytime='2013-02-04',city=' bj ')

元数据,数据文件删除,但目录daytime=2013-02-04还在



External Table 外部表
指向已经在 HDFS 中存在的数据,可以创建 Partition
它和内部表 在元数据的组织上是相同的,而实际数据的存储则有较大的差异
内部表的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除
外部表只有一个过程,加载数据和创建表同时完成,并不会移动到数据仓库目录中,只是与外部数据建立一个链接。当删除一个 外部表 时,仅删除该链接
创建数据文件 external_table.dat
创建表

hive>create externaltable external_table1 (key string) ROW FORMAT DELIMITED FIELDS TERMINATED BY'\t' location '/home/external';

HDFS创建目录/home/external

#hadoopfs -put/home/external_table.dat /home/external

加载数据

LOAD DATA INPATH'/home/external_table1.dat' INTO TABLE external_table1;

查看数据

select * from external_table

select count(*) from external_table

删除表

drop table external_table




Bucket  Table 桶表
桶表是对数据进行哈希取值,然后放到不同文件中存储。
创建表

  createtable bucket_table(id string) clustered by(id) into 4 buckets; 

加载数据

  sethive.enforce.bucketing = true;

  insertinto table bucket_table select name from stu; 

  insertoverwrite table bucket_table select name from stu;

数据加载到桶表时,会对字段取hash值,然后与桶的数量取模。把数据放到对应的文件中。
抽样查询

  select* from bucket_table tablesample(bucket 1 out of 4 on id);





CREATE TABLE user_info_bucketed(user_idBIGINT, firstname STRING, lastname STRING)

COMMENT 'A bucketed copy of user_info'

PARTITIONED BY(ds STRING)

CLUSTERED BY(user_id) INTO 256 BUCKETS;

set hive.enforce.bucketing = true; 

FROM user_id

INSERT OVERWRITE TABLE user_info_bucketed

PARTITION (ds='2009-02-25')

SELECT userid, firstname, lastnameWHERE ds='2009-02-25';



5. 内部表
   CREATE TABLE t1(id int);  
   LOAD DATA LOCAL INPATH '/root/id' INTO TABLE t1;
   
   CREATE TABLE t2(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
6. 分区表
   CREATE TABLE t3(id int) PARTITIONED BY (day int);  
   LOAD DATA LOCAL INPATH '/root/id' INTO TABLE t3 PARTITION (day=22);   
7. 桶表
   create table t4(id int) clustered by(id) into 4 buckets;
   set hive.enforce.bucketing = true;
   insert into table t4 select id from t3;
8. 外部表

   create external table t5(id int) location '/external';  


导入数据

当数据被加载至表中时,不会对数据进行任何转换。 Load 操作只是将数据复制 / 移动至 Hive 表对应的位置。

LOAD DATA [LOCAL]INPATH 'filepath' [OVERWRITE]
   
INTO TABLE tablename
   
[PARTITION (partcol1=val1,partcol2=val2 ...)]

把一个 Hive 表导入到另一个已建 Hive

INSERT OVERWRITETABLE tablename [PARTITION (partcol1=val1,partcol2=val2 ...)] select_statement FROM from_statement

CTAS

CREATE [EXTERNAL]TABLE [IF NOT EXISTS] table_name

  (col_namedata_type, ...) 

  AS SELECT …

例:create table new_external_test as select * from external_table1;


select
SELECT [ALL | DISTINCT] select_expr , select_expr , ...

  FROM table_reference

  [WHERE where_condition]

  [GROUP BY col_list]

  [ CLUSTER BY col_list |[DISTRIBUTE BY col_list][SORT BY col_list] | [ORDERBY col_list] ]

  [LIMIT number]

基于 Partition 的查询 

一般 SELECT 查询是全表扫描。但如果是分区表,查询就可以利用分区剪枝(input pruning)的特性,类似“分区索引“”,只扫描一个表中它关心的那一部分。Hive 当前的实现是,只有分区断言(Partitioned by)出现在离 FROM子句最近的那个WHERE 子句中,才会启用分区剪枝。例如,如果page_views表(按天分区)使用 date 列分区,以下语句只会读取分区为‘2008-03-01’的数据。

 SELECT page_views.*   FROM page_views   WHERE page_views.date >= '2013-03-01' AND page_views.date <= '2013-03-01'

LIMIT Clause

Limit 可以限制查询的记录数。查询的结果是随机选择的。下面的查询语句从 t1 表中随机查询5条记录:

SELECT * FROM t1LIMIT 5

Top N 查询

下面的查询语句查询销售记录最大的 5 个销售代表。

SET mapred.reduce.tasks = 1


表连接

导入 ac 信息表

hive> create table acinfo (name string,acip string)  row format delimited fields terminated by'\t' stored as TEXTFILE;

hive> load data local inpath '/home/acinfo/ac.dat' into table acinfo;

内连接

select b.name,a.* from dim_ac a joinacinfo b on (a.ac=b.acip) limit 10;

左外连接

select b.name,a.* from dim_ac a left outer join acinfo b ona.ac=b.aciplimit 10;


UDF

1、UDF函数可以直接应用于select语句,对查询结构做格式化处理后,再输出内容。

2、编写UDF函数的时候需要注意一下几点:

a)自定义UDF需要继承org.apache.hadoop.hive.ql.UDF。

b)需要实现evaluate函数,evaluate函数支持重载。

4、步骤

a)把程序打包放到目标机器上去;

b)进入hive客户端,添加jar包:hive>add jar/run/jar/udf_test.jar;

c)创建临时函数:hive>CREATE TEMPORARY FUNCTIONadd_example AS 'hive.udf.Add';

d)查询HQL语句:

SELECT add_example(8, 9) FROM scores;

SELECT add_example(scores.math, scores.art)FROM scores;

SELECT add_example(6, 7, 8, 6.8) FROM scores;

e)销毁临时函数:hive> DROP TEMPORARY FUNCTIONadd_example;

注:UDF只能实现一进一出的操作,如果需要实现多进一出,则需要实现UDAF

显示所有函数:

hive> show functions;

查看函数用法:

hive> describe function substr;






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值