1.Hive
1.1在hadoop生态圈中属于数据仓库的角色。他能够管理hadoop中的数据,同时可以查询hadoop中的数据。
hive有一套映射工具,可以把SQL转换为MapReduce中的job,可以把SQL中的表、字段转换为HDFS中的文件(夹)以及文件中的列。
这套映射工具称之为metastore,一般存放在derby、mysql中。
1.2 hive在hdfs中的默认位置是/user/hive/warehouse,是由配置文件hive-conf.xml中属性hive.metastore.warehouse.dir决定的。
•用户接口,包括CLI,JDBC/ODBC,WebUI
•元数据存储,通常是存储在关系数据库如mysql, derby 中
•解释器、编译器、优化器、执行器
•Hadoop:用 HDFS进行存储,利用 MapReduce进行计算
(1)解压缩、重命名、设置环境变量
#cd /usr/local
#tar -zxvfhive-0.9.0.tar.gz
#mv hive-0.9.0 hive
修改/etc/profile文件。
#vi /etc/profile
增加
export HIVE_HOME=/usr/local/hive
修改
exportPATH=$JAVA_HOME/bin:$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin
保存退出
#source /etc/profile
(2)在目录$HIVE_HOME/conf/下,执行命令mv hive-default.xml.template hive-site.xml重命名
在目录$HIVE_HOME/conf/下,执行命令mv hive-env.sh.template hive-env.sh重命名
(3)修改hadoop的配置文件hadoop-env.sh,修改内容如下:
export HADOOP_CLASSPATH=.:$CLASSPATH:$HADOOP_CLASSPATH:$HADOOP_HOME/bin
(4)在目录$HIVE_HOME/bin下面,修改文件hive-config.sh,增加以下内容:
export JAVA_HOME=/usr/local/jdk
export HIVE_HOME=/usr/local/hive
export HADOOP_HOME=/usr/local/hadoop
#hive
hive>show tables;
hive>create table test(id int,name string);
hive>quit;
观察:#hadoopfs -ls/user/hive
参数:hive.metastore.warehouse.dir
Hive的metastore
3.安装mysql
查看mysql rmp -qa |grep mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i mysql-server-******** 安装mysql服务端
(3)启动mysql 服务端,执行命令 mysqld_safe &
(4)执行命令 rpm -i mysql-client-******** 安装mysql客户端
(5)执行命令mysql_secure_installation设置root用户密码
4. 使用mysql作为hive的metastore
(1)把mysql的jdbc驱动放置到hive的lib目录下
(2)修改hive-site.xml文件,修改内容如下:
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://hadoop0:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>admin</value>
</property>
mysql中操作
设置权限
grant all on hive.* to 'root'@'%' identified by 'admin';
刷新
flush privileges;
Hive运行模式
我们可以通过mapred.job.tracker 来指明
设置方式:
hive > SET mapred.job.tracker=local;
#hive --service hwi &
用于通过浏览器来访问hive
http://hadoop0:9999/hwi/
#hive --service hiveserver &
Hive与传统数据库
查询语言 | HiveQL | SQL |
数据存储位置 | HDFS | Raw Device or 本地FS |
数据格式 | 用户定义 | 系统决定 |
数据更新 | 不支持 | 支持 |
索引 | 新版本有,但弱 | 有 |
执行 | MapReduce | Executor |
执行延迟 | 高 | 低 |
可扩展性 | 高 | 低 |
数据规模 | 大 | 小 |
Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定
义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行
分隔符 (”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式
TextFile,SequenceFile以及 RCFile)。由于在加载数据的过程中,不需要从用
用户数据格式到 Hive定义的数据格式的转换,因此,Hive 在加载的过程中不会对数
据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而
在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据
都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
Hive的数据类型
tinyint/smallint/int/bigint
float/double
boolean
string
Array/Map/Struct
Hive的数据存储
Hive的数据模型-数据库
使用#hive命令后,不使用hive>use <数据库名>,系统默认的数据库。可以显式使用hive> use default;
创建一个新库
hive > create database test_dw;
Hive的数据模型-表
hive>create tableinner_table (key string);
hive>load data localinpath '/root/inner_table.dat' into table inner_table;
select * from inner_table
select count(*) frominner_table
删除表时可能报错max key length is 1000 bytes
把mysql的数据库字符类型改为latin1
例如:test表中包含date 和 city 两个 Partition,
则对应于date=20130201,city = bj的 HDFS 子目录为:
/warehouse/test/date=20130201/city=bj
对应于date=20130202,city=sh的HDFS 子目录为;
/warehouse/test/date=20130202/city=sh
一些相关命令
SHOW TABLES; # 查看所有的表
SHOW TABLES'*TMP*'; #支持模糊查询
SHOW PARTITIONSTMP_TABLE; #查看表有哪些分区
DESCRIBE TMP_TABLE; #查看表结构
create table partition_table(rectimestring,msisdn string) partitionedby(daytime string,citystring) row format delimited fields terminated by '\t' stored as TEXTFILE;
load data local inpath'/home/partition_table.dat' into table partition_table partition (daytime='2013-02-01',city='bj');
select * from partition_table
select count(*) from partition_table
•删除表 drop table partition_table
通过loaddata 加载数据
元数据,数据文件删除,但目录daytime=2013-02-04还在
hive>create externaltable external_table1 (key string) ROW FORMAT DELIMITED FIELDS TERMINATED BY'\t' location '/home/external';
在HDFS创建目录/home/external
#hadoopfs -put/home/external_table.dat /home/external
LOAD DATA INPATH'/home/external_table1.dat' INTO TABLE external_table1;
select * from external_table
select count(*) from external_table
drop table external_table
createtable bucket_table(id string) clustered by(id) into 4 buckets;
sethive.enforce.bucketing = true;
insertinto table bucket_table select name from stu;
insertoverwrite table bucket_table select name from stu;
select* from bucket_table tablesample(bucket 1 out of 4 on id);
CREATE TABLE user_info_bucketed(user_idBIGINT, firstname STRING, lastname STRING)
COMMENT 'A bucketed copy of user_info'
PARTITIONED BY(ds STRING)
CLUSTERED BY(user_id) INTO 256 BUCKETS;
set hive.enforce.bucketing = true;
FROM user_id
INSERT OVERWRITE TABLE user_info_bucketed
PARTITION (ds='2009-02-25')
SELECT userid, firstname, lastnameWHERE ds='2009-02-25';
CREATE TABLE t1(id int);
LOAD DATA LOCAL INPATH '/root/id' INTO TABLE t1;
CREATE TABLE t2(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
6. 分区表
CREATE TABLE t3(id int) PARTITIONED BY (day int);
LOAD DATA LOCAL INPATH '/root/id' INTO TABLE t3 PARTITION (day=22);
7. 桶表
create table t4(id int) clustered by(id) into 4 buckets;
set hive.enforce.bucketing = true;
insert into table t4 select id from t3;
8. 外部表
create external table t5(id int) location '/external';
导入数据
LOAD DATA [LOCAL]INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename
[PARTITION (partcol1=val1,partcol2=val2 ...)]
INSERT OVERWRITETABLE tablename [PARTITION (partcol1=val1,partcol2=val2 ...)] select_statement FROM from_statement
CREATE [EXTERNAL]TABLE [IF NOT EXISTS] table_name
(col_namedata_type, ...) …
AS SELECT …
例:create table new_external_test as select * from external_table1;
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ CLUSTER BY col_list |[DISTRIBUTE BY col_list][SORT BY col_list] | [ORDERBY col_list] ]
[LIMIT number]
一般 SELECT 查询是全表扫描。但如果是分区表,查询就可以利用分区剪枝(input pruning)的特性,类似“分区索引“”,只扫描一个表中它关心的那一部分。Hive 当前的实现是,只有分区断言(Partitioned by)出现在离 FROM子句最近的那个WHERE 子句中,才会启用分区剪枝。例如,如果page_views表(按天分区)使用 date 列分区,以下语句只会读取分区为‘2008-03-01’的数据。
SELECT page_views.* FROM page_views WHERE page_views.date >= '2013-03-01' AND page_views.date <= '2013-03-01'
Limit 可以限制查询的记录数。查询的结果是随机选择的。下面的查询语句从 t1 表中随机查询5条记录:
SELECT * FROM t1LIMIT 5
下面的查询语句查询销售记录最大的 5 个销售代表。
SET mapred.reduce.tasks = 1
表连接
hive> create table acinfo (name string,acip string) row format delimited fields terminated by'\t' stored as TEXTFILE;
hive> load data local inpath '/home/acinfo/ac.dat' into table acinfo;
select b.name,a.* from dim_ac a joinacinfo b on (a.ac=b.acip) limit 10;
select b.name,a.* from dim_ac a left outer join acinfo b ona.ac=b.aciplimit 10;
UDF
1、UDF函数可以直接应用于select语句,对查询结构做格式化处理后,再输出内容。
2、编写UDF函数的时候需要注意一下几点:
a)自定义UDF需要继承org.apache.hadoop.hive.ql.UDF。
b)需要实现evaluate函数,evaluate函数支持重载。
4、步骤
a)把程序打包放到目标机器上去;
b)进入hive客户端,添加jar包:hive>add jar/run/jar/udf_test.jar;
c)创建临时函数:hive>CREATE TEMPORARY FUNCTIONadd_example AS 'hive.udf.Add';
d)查询HQL语句:
SELECT add_example(8, 9) FROM scores;
SELECT add_example(scores.math, scores.art)FROM scores;
SELECT add_example(6, 7, 8, 6.8) FROM scores;
e)销毁临时函数:hive> DROP TEMPORARY FUNCTIONadd_example;
注:UDF只能实现一进一出的操作,如果需要实现多进一出,则需要实现UDAF
显示所有函数:
hive> show functions;
查看函数用法:
hive> describe function substr;