一、慢SQL优化思路
- 慢查询日志记录慢SQL
- explain查询SQL的执行计划
- profile分析执行耗时
- Optimizer Trace分析详情
1、慢查询日志记录慢SQL
show variables like 'slow_query_log%';
show variables like 'long_query_time';
查看下慢查询日志配置,我们可以使用show variables like 'slow_query_log%'命令。
如何启用慢查询日志呢?
临时开启:
set global slow_query_log='ON';
永久开启:
/etc/my.cnf中追加配置:
放到[mysqld]下:
slow_query_log=1
slow_query_log_file=/var/lib/mysql/localhost-slow.log
可以使用show variables like 'long_query_time’命令,查看超过多少时间才记录到慢查询日志。
通过慢查日志定位执行效率较低的SQL语句,重点关注分析。
2、explain查看分析SQL的执行计划
一般来说,我们需要重点关注type、rows、filtered、extra、key。
type
type表示连接类型,查看索引执行情况的一个重要指标。
以下性能从好到坏依次:system > const > eq_ref > ref > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL
system:这种类型要求数据库表中只有一条数据,是const类型的一个特例,一般情况下是不会出现的。
const:通过一次索引就能找到数据,一般用于主键或唯一索引作为条件,这类扫描效率极高,速度非常快。
eq_ref:常用于主键或唯一索引扫描,一般指使用主键的关联查询
ref : 常用于非主键和唯一索引扫描。
ref_or_null:这种连接类型类似于ref,区别在于MySQL会额外搜索包含NULL值的行
index_merge:使用了索引合并优化方法,查询使用了两个以上的索引。
unique_subquery:类似于eq_ref,条件用了in子查询
index_subquery:区别于unique_subquery,用于非唯一索引,可以返回重复值。
range:常用于范围查询,比如:between … and ,大于小于或 In 等操作
index:全索引扫描 该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小;
ALL:全表扫描
实际sql优化中,最后达到ref或range级别。
rows
该列表示MySQL估算要找到我们所需的记录,需要读取的行数。对于InnoDB表,此数字是估计值,并非一定是个准确值。
filtered
该列是一个百分比的值,表里符合条件的记录数的百分比。简单点说,这个字段表示存储引擎返回的数据在经过过滤后,剩下满足条件的记录数量的比例。
extra
该字段包含有关MySQL如何解析查询的其他信息,它一般会出现这几个值:
Using filesort:表示按文件排序,一般是在指定的排序和索引排序不一致的情况才会出现。一般见于order by语句
Using index :表示是否用了覆盖索引。
Using temporary: 表示是否使用了临时表,性能特别差,需要重点优化。一般多见于group by语句,或者union语句。
Using where : 表示使用了where条件过滤. WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。需要回表查询
Using index condition:MySQL5.6之后新增的索引下推。在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。
key
该列表示实际用到的索引名称。一般配合possible_keys列一起看。
3、profile分析执行耗时
explain只是看到SQL的预估执行计划,如果要了解SQL真正的执行线程状态及消耗的时间,需要使用profiling。开启profiling参数后,后续执行的SQL语句都会记录其资源开销,包括IO,上下文切换,CPU,内存等等,我们可以根据这些开销进一步分析当前慢SQL的瓶颈再进一步进行优化。
profiling默认是关闭,我们可以使用show variables like '%profil%'查看是否开启。
可以使用set profiling=ON开启。开启后,可以运行几条SQL,然后使用show profiles查看一下。
set profiling=ON
show profiles会显示最近发给服务器的多条语句,条数由变量profiling_history_size定义,默认是15。
如果我们需要看单独某条SQL的分析,可以show profile查看最近一条SQL的分析,也可以使用show profile for query id(其中id就是show profiles中的QUERY_ID)查看具体一条的SQL语句分析。
除了查看profile ,还可以查看cpu和io。
4、Optimizer Trace分析详情
profile只能查看到SQL的执行耗时,但是无法看到SQL真正执行的过程信息,即不知道MySQL优化器是如何选择执行计划。这时候,我们可以使用Optimizer Trace,它可以跟踪执行语句的解析优化执行的全过程。
我们可以使用set optimizer_trace="enabled=on"打开开关,接着执行要跟踪的SQL,最后执行select * from information_schema.optimizer_trace跟踪,如下:
大家可以查看分析其执行树,会包括三个阶段:
join_preparation:准备阶段
join_optimization:分析阶段
join_execution:执行阶段
查看json串
5、 确定SQL问题并采用相应的方案
最后确认问题,就采取对应的措施。
多数慢SQL都跟索引有关,比如不加索引,索引不生效、不合理等,这时候,我们可以优化索引。
优化SQL语句,load额外的字段,比如一些in元素过多问题(分批),深分页问题(基于上一次数据过滤等),进行时间分段查询。
SQl没办法很好优化,可以改用ES的方式,或者数仓。
如果单表数据量过大导致慢查询,则可以考虑分库分表。
如果数据库在刷脏页导致慢查询,考虑是否可以优化一些参数,跟DBA讨论优化方案。
如果存量数据量太大,考虑是否可以让部分数据归档。
二、慢查询案例
1、隐式转换
字段为字符串类型。
建立了B+Tree索引。
使用数值格式,没有走索引。
使用正确的格式,正常走索引。
字段为字串类型,是B+树的普通索引,如果查询条件传了一个数字过去,就会导致索引失效。
为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们