家用宽带下openwrt开放外网访问,nas,alist必备

原文地址

如题,实际上目前的家用宽带,均已经分配了公网 ipv6 地址,出门在外均可以访问家用宽带。并不需要打电话向运营商申请,默认已经有了,但是需要在路由器上设置相关选项

目前光猫 并未设置 桥接模式,而是运营商配好的光猫。下面接入的二级路由。

接入的二级路由是 openwrt

网络环境如下:运营商路由器 =》 openwrt路由器 =》 局域网等手机、电脑设备

局域网下的手机、电脑均连入的 openwrt路由器,而 openwrt 作为子设备接入的运营商路由器

用途

开放ipv6公网访问后,可以使用公网ipv6访问家中的nas,或者搭建好的 alist 等服务

虽然 ipv6 地址可能发生变动,如果再搭配一个自动检测 ipv6 地址变动的程序,再自动的解析绑定最新域名,即可实现随时访问内网文件、服务等。

开放运营商路由器的防火墙

运营商赠送的光猫路由器自带了防火墙,禁用了外网访问,需要开放,如下:

Ipv6spi 取消勾选, 然后点击 确定 保存

微信截图_20240714105938

实际上,取消勾选后,接入光猫的局域网设备均可以被外网访问,有一定的安全风险

openwrt 开放路由器下的设备公网访问

光猫路由器开放后,openwrt具备公网访问的条件,但 openwrt 也有一道防火墙,默认情况下,openwrt 路由器下的 转发 选项是拒绝,只要将拒绝改为 接受 ,则路由器下所有设备均可被公网访问

但是家用环境下,智能电视、扫地机器人等等设备,系统老旧,存在被入侵风险,所以不建议修改 转发 选项,继续保持默认,然后开放指定的端口即可

如果图简单省事,将 转发改为 接受即可

微信截图_20240714105719

开放 openwrt 路由器下指定局域网端口访问

如果为了提高网络安全性,不允许所有局域网设备公网访问,仅开放指定端口或设备,可以在通信规则中添加规则,在规则中设置 目标端口,如下,开放局域网内设备的 8084 端口

微信截图_20240714105736
微信截图_20240714105749
微信截图_20240714105833
微信截图_20240714105851

如上即可开放局域网设备的 8084 端口以供公网访问

注意事项

一台局域网设备会被分配多个 ipv6 地址,但有的ipv6地址是局域网地址,无法被公网访问。

微信截图_20240714125240

所以配置完成后,需要找到能被公网访问的 ipv6 才能正常使用,另外,对于常用的端口,如 80、443 ,运营商防火墙依旧会阻断

IPv6地址中,240e开头是电信,2408开头是联通,2409开头是移动

原文地址

### 构建深度学习文本情感分析系统 #### 1. 深度学习在文本情感分类中的优势 传统机器学习算法在处理大规模数据集时容易遇到性能瓶颈,而深度学习方法能够有效应对这些问题。深度学习允许在几乎没有先验知识的情况下为具体问题建立模型[^2]。 #### 2. 数据准备阶段 为了训练有效的深度学习模型,在开始之前需要准备好高质量的数据集。这通常涉及收集带有标签的文本样本,这些样本应覆盖目标应用场景下的多种情况。例如,在电影评论的情感分析中,应当获取正向和负向评价的例子作为训练材料[^4]。 #### 3. 特征工程与预处理 尽管深度学习减少了对手动特征设计的需求,但仍需对输入数据进行适当转换: - **分词**:将句子分解成单词序列。 - **去除停用词**:过滤掉常见但无意义的词语。 - **编码表示**:采用如Word Embedding的方式把词汇映射到连续空间内的向量形式。 ```python from keras.preprocessing.text import Tokenizer tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) ``` 此过程有助于提高后续神经网络的学习效率并增强泛化能力[^3]。 #### 4. 建立深度学习模型架构 针对文本情感分类任务可以选择不同类型的神经网络结构,比如卷积神经网络(CNN),循环神经网络(RNN)及其变体LSTM/GRU等。这里给出一个简单的基于Keras框架实现二元分类器的例子: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM, Embedding model = Sequential() model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim)) model.add(LSTM(units=lstm_units, dropout=dropout_rate)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` 上述代码片段展示了如何定义一个包含嵌入层、LSTM单元以及全连接输出层的基础模型配置[^1]。 #### 5. 训练与评估 完成模型搭建之后就可以利用先前准备好的带标注语料库来进行迭代优化直至收敛;同时也要注意设置合理的验证机制来监控过拟合现象的发生。最终通过测试集上的表现衡量整个系统的准确性及其他指标。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值