创业公司做数据分析
文章平均质量分 95
本系列文章主要总结创业公司在有限的资源下,如何合理选型,构建自己的数据系统,为公司决策、精准运营和产品提供数据支撑。
Mr-Bruce
专注于大数据系统研发
展开
-
创业公司做数据分析(六)数据仓库的建设
本文重点探讨了数据处理层中数据仓库的建设,旨在构建一个适于分析的数据存储系统。文章探讨了数据仓库建设中的两个重要环节:数据建模与ETL过程,根据实践谈了谈维度建模的方法,以及ETL中的增量更新机制与基于Airflow的任务流管理系统。原创 2017-02-02 19:36:58 · 15854 阅读 · 6 评论 -
创业公司做数据分析(四)ELK日志系统
本文将重点探讨数据采集层中的ELK日志系统,结合自身实践来介绍如何使用ELK系统、使用中的问题以及如何解决。ELK是一套开源的集中式日志数据管理的解决方案,由Elasticsearch、Logstash和Kibana三个系统组成。原创 2017-01-07 00:54:07 · 14362 阅读 · 4 评论 -
创业公司做数据分析(三)用户行为数据采集系统
本文将重点探讨数据采集层中的用户行为数据采集系统,分析了为什么要建设用户行为数据采集系统、采什么、前端怎么采、后端怎么存。原创 2016-12-27 17:12:46 · 21600 阅读 · 8 评论 -
创业公司做数据分析(二)运营数据系统
本文探讨数据应用层中的运营数据系统,因为运营数据几乎是所有互联网创业公司开始做数据的起点,也是早期数据服务的主要对象。本文将着重回顾下我们做了哪些工作、遇到过哪些问题、如何解决并实现了相应的功能。原创 2016-12-07 22:39:07 · 12984 阅读 · 4 评论 -
创业公司做数据分析(一)开篇
作为系列文章的第一篇,本文采用“WHY->WHAT->HOW”的思考方式来介绍三点:1. 创业公司为什么需要做数据分析?2. 创业公司做数据分析,需要做哪些事情?3. 如何实现这些数据上的需求?原创 2016-12-01 23:14:06 · 13595 阅读 · 4 评论