第十一周项目1 -验证算法(2)--二叉树的构造算法验证

问题及代码
/*     
*烟台大学计算机与控制工程学院      
*作    者:张雯婧
*完成日期:2016年11月6日  
*问题描述:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。  
*/    
(1)btree.h
#define MaxSize 100    
typedef char ElemType;    
typedef struct node    
{    
    ElemType data;              //数据元素    
    struct node *lchild;        //指向左孩子    
    struct node *rchild;        //指向右孩子    
} BTNode;    
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链    
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针    
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针    
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针    
int BTNodeDepth(BTNode *b); //求二叉树b的深度    
void DispBTNode(BTNode *b); //以括号表示法输出二叉树    
void DestroyBTNode(BTNode *&b);  //销毁二叉树    
BTNode *CreateBT1(char *pre,char *in,int n);  
(2)btree.cpp
#include <stdio.h>    
#include <malloc.h>    
#include "btree.h"    
    
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链    
{    
    BTNode *St[MaxSize],*p=NULL;    
    int top=-1,k,j=0;    
    char ch;    
    b=NULL;             //建立的二叉树初始时为空    
    ch=str[j];    
    while (ch!='\0')    //str未扫描完时循环    
    {    
        switch(ch)    
        {    
        case '(':    
            top++;    
            St[top]=p;    
            k=1;    
            break;      //为左节点    
        case ')':    
            top--;    
            break;    
        case ',':    
            k=2;    
            break;                          //为右节点    
        default:    
            p=(BTNode *)malloc(sizeof(BTNode));    
            p->data=ch;    
            p->lchild=p->rchild=NULL;    
            if (b==NULL)                    //p指向二叉树的根节点    
                b=p;    
            else                            //已建立二叉树根节点    
            {    
                switch(k)    
                {    
                case 1:    
                    St[top]->lchild=p;    
                    break;    
                case 2:    
                    St[top]->rchild=p;    
                    break;    
                }    
            }    
        }    
        j++;    
        ch=str[j];    
    }    
}    
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针    
{    
    BTNode *p;    
    if (b==NULL)    
        return NULL;    
    else if (b->data==x)    
        return b;    
    else    
    {    
        p=FindNode(b->lchild,x);    
        if (p!=NULL)    
            return p;    
        else    
            return FindNode(b->rchild,x);    
    }    
}    
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针    
{    
    return p->lchild;    
}    
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针    
{    
    return p->rchild;    
}    
int BTNodeDepth(BTNode *b)  //求二叉树b的深度    
{    
    int lchilddep,rchilddep;    
    if (b==NULL)    
        return(0);                          //空树的高度为0    
    else    
    {    
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep    
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep    
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);    
    }    
}    
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树    
{    
    if (b!=NULL)    
    {    
        printf("%c",b->data);    
        if (b->lchild!=NULL || b->rchild!=NULL)    
        {    
            printf("(");    
            DispBTNode(b->lchild);    
            if (b->rchild!=NULL) printf(",");    
            DispBTNode(b->rchild);    
            printf(")");    
        }    
    }    
}    
void DestroyBTNode(BTNode *&b)   //销毁二叉树    
{    
    if (b!=NULL)    
    {    
        DestroyBTNode(b->lchild);    
        DestroyBTNode(b->rchild);    
        free(b);    
    }    
}    
BTNode *CreateBT1(char *pre,char *in,int n)    
/*pre存放先序序列,in存放中序序列,n为二叉树结点个数,  
本算法执行后返回构造的二叉链的根结点指针*/    
{    
    BTNode *s;    
    char *p;    
    int k;    
    if (n<=0) return NULL;    
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s    
    s->data=*pre;    
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k    
        if (*p==*pre)                       //pre指向根结点    
            break;                          //在in中找到后退出循环    
    k=p-in;                                 //确定根结点在in中的位置    
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树    
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树    
    return s;    
}    
(3)main.cpp
#include<stdio.h>    
#include"btree.h"    
int main()    
{    
     ElemType pre[]="ABDGCEF",in[]="DGBAECF";    
    BTNode *b1;    
    b1=CreateBT1(pre,in,7);    
    printf("b1:");    
    DispBTNode(b1);    
    printf("\n");    
    return 0;    
    
}    
运行结果
知识点总结:
任何含有n个节点的不同的二叉树,都可以由先序和后序来唯一确定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值