- 博客(14)
- 资源 (1)
- 收藏
- 关注
原创 2020农行研发中心面经
面试通知14:00面试,最终18:30才结束所有流程,大部分时间都在等待(#^.^#)1.在大会议室手撕代码:题目是:二维数组中的查找,剑指offer原题,因为之前刷过,所以做的很顺利。用了最优的思想:从二维数组的右上角元素a开始比较,如果f>a,则第一行忽略查找;如果f<a,则最后一列忽略查找。2.在小会议室面试:1个女HR,男面试官1(主),男面试官2(主),主面试...
2019-09-12 10:58:26 11522 3
原创 数据库的关系运算和完整性约束
https://baijiahao.baidu.com/s?id=1602887097860809528&wfr=spider&for=pc
2019-08-14 09:37:37 712
原创 LeetCode无重复字符的最长子串
题目描述:给定一个字符串,请你找出其中不含有重复字符的最长子串的长度。示例1:输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: "pwwkew"输出: 3解释: 因为无重复字符的...
2019-08-13 14:48:35 682
原创 猿辅导2019校招技术类笔试题(题目出的很好)
1.猿辅导公司某研发小组一共有 12 名同学,其中 9 人能做后端开发,6 人能做前端开发。现在要抽调 4 名同学成立项目小组,负责公司的一项“机密”项目。其中 2 名同学做后端开发,2 名同学做前端开发。有多少种选派方法?分析:由9+6=15>12可知,前端后端开发都能做的人数为(9+6-12)=3人,只会做后端开发的有(9-3)=6人,只会做前端开发的有(6-3)=3人。以前端后端都...
2019-08-13 10:07:00 3371
原创 LeetCode数组问题两数相加
题目描述:给出两个非空的链表用来表示两个非负的整数。其中,它们各自的位数是按照逆序的方式存储的,并且它们的每个节点只能存储一位数字。如果,将这两个数相加起来,则会返回一个新的链表来表示它们的和。假设除了数字0之外,这两个数都不会以0开头。示例:输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)输出:7 -> 0 -> 8原因:342 ...
2019-08-12 16:49:41 333
原创 LeetCode数组问题两数之和
题目描述:给定一个整数数组nums和一个目标值target,请在该数组中找出和为目标值的那两个整数,并返回它们的数组下标。示例:给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 + 7 = 9所以返回 [0, 1]解题思路:借用Python字典,遍历元素的时候,记录元素的下标,当找到target-a的时候...
2019-08-12 16:41:21 149
原创 LeetCode和剑指offer要刷起来了。
一会儿要顶着台风和大雨去一家公司面试,这是我秋招的第一次面试,预期结果很可能是惨虐。但是,这次面试我第一个不用笔试电面直通现场面的机会,还是要抓住。回来后写面经。(希望不被虐的太惨)*******************************分割线****************************************面试后的第二天补下面经。(现在结果还未知)1.第一轮技...
2019-08-10 09:20:43 1009
原创 有关机器学习的小建议
当你调试你的学习算法时,当面对测试集你的算法效果不佳时,你会怎么做 ? 使用更多的训练样本? 使用更少的特征集? 得到更多的其他特征? 尝试增加多项式的特征? 尝试增加拉姆他? 尝试减小拉姆他?机器学习诊断法 我们通过将数据集分成训练集和测试集,将训练集训练出的参数用测试集数据测试性能。 常用的两种代价函数: 在多项式回归时, 怎...
2018-06-12 21:31:18 265
转载 欠拟合、过拟合及其解决方法
在机器学习或者训练深度神经网络时,经常会出现欠拟合和过拟合这两个问题,通常,一开始我们的模型往往是欠拟合的,正是因为如此才有了优化的空间,需要不断的调整算法来使得模型的表达更加准确。但是优化到了一定程度后就需要解决过拟合的问题。 首先是在我们进行模拟训练的时候会出现模型不能够很好地拟合数据的情况,这个时候就需要我们来判断究竟现在的模型是欠拟合还是过拟合,那么怎么来判断这两者的情况呢?...
2018-06-05 18:41:57 8120
原创 模型的评估方法及错误率与精度
模型的评估方法:留出法(hold-out):直接将X分解为两个不相交的集合,其中一个作为训练集,另一个作为测试集。常常将2/3-4/5的样本用作训练,其余用作测试。交叉验证(cross validation):将数据集X分解为k个互补相交的子集,即。然后每次用k-1个子集训练,剩余一个做测试,最终返回K个测试结果---k折交叉验证。 >留一法(Leave-One-Out):假设...
2018-06-04 16:36:01 3417
原创 1.3有监督、无监督和半监督学习
1.3有监督、无监督和半监督学习 已知要划分的类别,并且能够获得一定数量的类别已知的训练样本,这种情况下建立分类器的问题属于监督学习问题。 事先不知道要划分的是什么类别,更没有类别已知的样本用作训练,在很多情况下甚至不知道有多少类别,我们要做的是根据样本特征将样本聚成几个类。这种情况下建立分类器的问题属于无监督学习问题。 其中,无监督模式识别主要用于确定两个特征向量之间的...
2018-06-04 10:28:22 2524 1
原创 1.2 特征、特征向量和分类器
1.2 特征、特征向量和分类器 分类任务中的基本问题:怎样得到特征?在以前的例子中,用均值和标准偏差作为特征,是因为我们知道应该从图像中提取这些特征。但在实际问题中,特征不是显而易见的。这是分类系统设计的特征提取阶段的任务,它完成已知样本的识别。特征数L为多少最好?这是一个很重要的问题,它在分类系统设计的特征选择阶段完成。在实际问题中,总是产生大量的特征供选择,需要选择其中最具有代表性的特征...
2018-05-31 20:10:49 4689
原创 1.1模式识别的重要性
1.模式识别的重要性模式识别是一门以应用为基础的学科,目的是将对象进行分类。模式识别的应用:机器视觉字符(字母或数字)识别计算机辅助诊断(目的是帮助医生做诊断决定,最终的诊断仍是由医生决定)语音识别数据库中的数据挖掘和知识探索...
2018-05-31 19:18:43 2276
原创 (模式识别)特征降维问题
(模式识别)特征降维问题降维的必要性多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间只有0.02%。过多的变量会妨碍查找规律的建立。仅在变量层面上分析可能会忽略变量之间的潜在联系。降维的目的:减少预测变量的个数确保这些变量是相互独立的提供一个框架来解释结果降维的方法主要有:...
2018-05-31 15:21:33 1627
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人