CF498D Traffic Jams in the Land

此题确实是妙,用到了题目的每一个小细节

先是全题的重中之重,对于每一条路,他的拥堵值一定小于等于6
这意味着什么,因为要对拥堵值取模,我们的累计时间就可以提前进行取模
这样就可以表示出该节点的状态了

讲的比较混乱,我们来说代码
我们使用线段树,区间权值的意义是,在时间 i i i跑到 l l l点,到达 r + 1 r+1 r+1需要多长时间
这样对于查询操作我们只需要区间求和即可
如何实现呢,我们前面也说了,枚举当前点的每一种情况, l c m ( 1 , 2 , 3 , 4 , 5 , 6 ) = 60 lcm {(1,2,3,4,5,6 )}=60 lcm(1,2,3,4,5,6)=60
这又意味着啥呢,对于时间,我们可以直接取模60,不影响整除结果

我们就可以表示出所有状态了
这样他的pushup就长这样

void pushup(int k){
	for(int i=0;i<=59;i++){
		tr[k].val[i]=tr[lch(k)].val[i]+tr[rch(k)].val[(tr[lch(k)].val[i]+i)%mod];
	}
	return;
}

是不是豁然开朗,当然,修改权值的时候也要全部给底层点更新才行,和建树时一模一样
其他的小技巧看代码即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define lch(x) x*2
#define rch(x) x*2+1
using namespace std;
const int mod = 60;
const int maxn = 200005;
int n,m,val[maxn];

struct node{
	int l,r,val[61];
}tr[maxn*3]; 

inline int read(){
    int f=1,x=0;char ch;
    do{ch=getchar();if(ch=='-')f=-1;}while(ch<'0'||ch>'9');
    do{x=x*10+ch-'0';ch=getchar();}while(ch>='0'&&ch<='9');
    return f*x;
}

void pushup(int k){
	for(int i=0;i<=59;i++){
		tr[k].val[i]=tr[lch(k)].val[i]+tr[rch(k)].val[(tr[lch(k)].val[i]+i)%mod];
	}
	return;
}

void build(int k,int l,int r){
	tr[k].l=l;
	tr[k].r=r;
	if(l==r){
		for(int i=0;i<=59;i++){
			tr[k].val[i]=1+(i%val[l]==0);
		}
		return ;
	}
	int mid=l+r>>1;
	build(lch(k),l,mid);
	build(rch(k),mid+1,r);
	pushup(k);
}

void modi(int k,int x,int num){
	int l=tr[k].l;
	int r=tr[k].r;
	if(l==r&&l==x){
		val[x]=num;
		for(int i=0;i<=59;i++){// 全部更新 
			tr[k].val[i]=1+(i%num==0);
		}
		return ;
	}
	int mid=l+r>>1;
	if(x<=mid)modi(lch(k),x,num);
	else modi(rch(k),x,num);
	pushup(k);
}

int que(int k,int x,int y,int times){
	int l=tr[k].l;
	int r=tr[k].r;
	if(l>y||r<x)return 0;
	if(x<=l&&y>=r)return tr[k].val[times];
	int mid=l+r>>1,res=0;
	res=que(lch(k),x,y,times);// 更新累计时间 
	return res+que(rch(k),x,y,(times+res)%60);// 这里别忘了取模 
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
    	scanf("%d",&val[i]);
	}
	build(1,1,n);
	scanf("%d",&m);
	for(int i=1;i<=m;i++){
		string aa; 
		int b,c;
		cin>>aa>>b>>c;
		if(aa[0]=='A'){
			c--;// 是统计这一点之前的哦,我门等于运用了边换点的思想 
			printf("%d\n",que(1,b,c,0));
		}
		else {
			modi(1,b,c);
		}
	}
    return 0;
}
Shifts in China’s Rural and Urban Population: 2000-2020 The bar chart clearly reveals that from 2000 to 2020, while the total population in China increased moderately from 1.25 billion to 1.41 billion, population in urban and rural areas experienced dramatic shifts in different directions. Urban population rose from 450 million in 2000 to 670 million in 2010 and 900 million in 2020; contrastingly, rural population declined from 800 million in 2000 to 680 million in 2010 and 510 million in 2020. The population gap narrowed largely because of the joint effects of urbanization, unequal economic opportunities in rural and urban areas, and the expansion of higher education. In the first place, there was a large-scale urban sprawl during this period. Places which had been part of the vast countryside were incorporated into cities, causing hundreds of millions of rural dwellers to be passively transformed into urban residents. What’s more, while urban living standards improved greatly in these years, few economic opportunities fell on rural areas and most peasant families remained at the poverty line. Poverty prompted the call for change, leading a large quantity of healthy young peasants to leave their hometowns and flock to cities for a better living. Last but not least, China’s higher education grew at an unprecedented rate in these years. More high school graduates than ever before entered colleges and universities, most of whom preferred to stay in urban areas after graduation for personal development. The increase in urban population was a sure indication of economic and educational achievements in China. It benefited the country in many aspects, relieving the shortage of labor force in cities, lessening the burden of peasants to support their families, and affording young people from rural areas more opportunities to display their talents. However, the migration of rural residents into urban areas inevitably brought about disadvantages. Some of them, such as waste of arable land and left-behind children in the countryside, as well as traffic congestion and soaring housing prices in cities, have already called the attention of the government and corresponding measures have begun to take effect. But others, especially the inability of many peasants to integrate into urban life due to their lack of education and civilized habits, have long been neglected. In this sense, we cannot be satisfied with the superficially optimistic figures in the chart, but should endeavor to foster the integration of these newcomers by providing them with adequate assistance in educational and cultural aspects, so that they can find easier access to the prosperity and convenience of urban life and be more fully devoted to the development of cities.翻译成英文版两百单词左右的文章
02-21
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值