P2344「Usaco2011 Feb」奶牛抗议

这题是真的水爆
一个 O ( N 2 ) O(N^2) O(N2)的暴力有 92 p t s 92pts 92pts

这题要求你求出分段的个数,如果没有其他的限制
对于每一个点 x , f [ x ] = ∑ y = 1 x − 1 f [ y ] x,f[x]=\sum_{y=1}^{x-1}f[y] x,f[x]=y=1x1f[y]
因为每一段都必须是正的所以本题为 ∑ y = 1 x − 1 f [ y ] ∗ [ s u m [ x ] − s u m [ y ] > = 0 ] \sum_{y=1}^{x-1}f[y]*[sum[x]-sum[y]>=0] y=1x1f[y][sum[x]sum[y]>=0]
s u m [ x ] − s u m [ y ] > = 0 sum[x]-sum[y]>=0 sum[x]sum[y]>=0 等价于 s u m [ x ] > = s u m [ y ] sum[x]>=sum[y] sum[x]>=sum[y]
那么我们只需要对 s u m sum sum值在 s u m [ y ] sum[y] sum[y]之下的且位置在 y y y之前的点求和就好了
我们使用树状数组,每次把答案插进树里,像统计逆序对一样就好了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 200007;
const int mod = 1e9+9;
int val[maxn],n,ans;
int c[maxn],cnt;
 
struct node{
    int sum,h,pos;
}a[maxn];
bool cmp1(node a,node b){return a.sum<b.sum;}
bool cmp2(node a,node b){return a.h<b.h;}
void update(int x,int num){
    while(x<=cnt){
        c[x]=(c[x]+num)%mod;
        x+=x&(-x);
    }
}
int get(int x){
    int res=0;
    while(x>0){
        res=(res+c[x])%mod;
        x-=x&(-x);
    }
    return res;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
      scanf("%d",&val[i]);
      a[i].h=i;
      a[i].sum=a[i-1].sum+val[i];
    }
    a[0].sum=0,a[0].h=0;
    sort(a,a+1+n,cmp1);
    a[0].pos=++cnt;
    for(int i=1;i<=n;i++){
        if(a[i].sum!=a[i-1].sum)
        a[i].pos=++cnt;
        else a[i].pos=cnt;
    }
    sort(a,a+1+n,cmp2);
    update(a[0].pos,1);
    for(int i=1;i<=n;i++){
        ans=get(a[i].pos);
        update(a[i].pos,ans);
    }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值