这题是真的水爆
一个
O
(
N
2
)
O(N^2)
O(N2)的暴力有
92
p
t
s
92pts
92pts…
这题要求你求出分段的个数,如果没有其他的限制
对于每一个点
x
,
f
[
x
]
=
∑
y
=
1
x
−
1
f
[
y
]
x,f[x]=\sum_{y=1}^{x-1}f[y]
x,f[x]=∑y=1x−1f[y]
因为每一段都必须是正的所以本题为
∑
y
=
1
x
−
1
f
[
y
]
∗
[
s
u
m
[
x
]
−
s
u
m
[
y
]
>
=
0
]
\sum_{y=1}^{x-1}f[y]*[sum[x]-sum[y]>=0]
∑y=1x−1f[y]∗[sum[x]−sum[y]>=0]
s
u
m
[
x
]
−
s
u
m
[
y
]
>
=
0
sum[x]-sum[y]>=0
sum[x]−sum[y]>=0 等价于
s
u
m
[
x
]
>
=
s
u
m
[
y
]
sum[x]>=sum[y]
sum[x]>=sum[y]
那么我们只需要对
s
u
m
sum
sum值在
s
u
m
[
y
]
sum[y]
sum[y]之下的且位置在
y
y
y之前的点求和就好了
我们使用树状数组,每次把答案插进树里,像统计逆序对一样就好了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 200007;
const int mod = 1e9+9;
int val[maxn],n,ans;
int c[maxn],cnt;
struct node{
int sum,h,pos;
}a[maxn];
bool cmp1(node a,node b){return a.sum<b.sum;}
bool cmp2(node a,node b){return a.h<b.h;}
void update(int x,int num){
while(x<=cnt){
c[x]=(c[x]+num)%mod;
x+=x&(-x);
}
}
int get(int x){
int res=0;
while(x>0){
res=(res+c[x])%mod;
x-=x&(-x);
}
return res;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&val[i]);
a[i].h=i;
a[i].sum=a[i-1].sum+val[i];
}
a[0].sum=0,a[0].h=0;
sort(a,a+1+n,cmp1);
a[0].pos=++cnt;
for(int i=1;i<=n;i++){
if(a[i].sum!=a[i-1].sum)
a[i].pos=++cnt;
else a[i].pos=cnt;
}
sort(a,a+1+n,cmp2);
update(a[0].pos,1);
for(int i=1;i<=n;i++){
ans=get(a[i].pos);
update(a[i].pos,ans);
}
printf("%d",ans);
return 0;
}