这题tarjan缩点的思路不难想到,关键是怎么统计
我们思考每个部分的贡献是什么
对于一个环,我们只有两种方法,因为每条边必须和一个点分在一组
所以只有顺时针到底和逆时针到底两种方式
对于一个非环部分,我们有 s i z e size size中方法,实际上就是一个图多一条伸出去的边
那么我们如何判断呢,不难发现,,一个环,环内的边一定等于换的大小
我们统计一下每次判断就行了…
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 200007;
const int mod = 1e9+7;
const int INF = 2147483647;
struct node{
int to,next,w;
}edge[maxn*2];
int cnt,head[maxn];
void add(int from,int to){
edge[++cnt].to=to;
edge[cnt].next=head[from];
head[from]=cnt;
}
int co[maxn],dfn[maxn],low[maxn],st[maxn],instack[maxn],top,visn,tot;
long long num[maxn];
void tarjan(int u){
st[++top]=u;
dfn[u]=low[u]=++visn;
instack[u]=1;
for(int i=head[u];i;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
tarjan(to);
low[u]=min(low[u],low[to]);
}
else if(!co[to])low[u]=min(low[u],dfn[to]);
}
if(dfn[u]==low[u]){
int t;tot++;
do{
t=st[top--];
num[tot]++;
co[t]=tot;
instack[t]=0;
}while(t!=u);
}
}
long long del[maxn];
int F[maxn],T[maxn],n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
F[i]=x,T[i]=y;
add(x,y),add(y,x);
}
for(int i=1;i<=n;i++){
if(!dfn[i])tarjan(i);
}
for(int i=1;i<=n;i++)cout<<co[i]<<" ";
cout<<endl;
for(int i=1;i<=m;i++){
int c1=co[F[i]];
int c2=co[T[i]];
if(c1==c2)del[c1]++;
}
long long ans=1;
for(int i=1;i<=tot;i++){
if(del[i]==num[i])num[i]=2;
ans=(ans%mod*num[i]%mod)%mod;
}
cout<<ans;
}
/*
6 6
1 2
2 3
3 4
4 5
5 6
6 4
*/