因果推断
文章平均质量分 83
舒克与贝克
AI 学习与生活
展开
-
[因果推断] Double Machine Learning-DML介绍(四)
Double Machine Learning——一种去偏方法DML是一种处理基于观测数据进行因果建模的方法。大家已知的是,观测数据是有偏的,即存在特征X既影响目标outcome Y,又影响Treatment T。那么在进行因果建模之前,我们需要进行去偏处理,使得Treatment Y独立于特征X,此时的观测数据近似相当于RCT数据,之后我们就可以使用因果模型进行CATE评估了。HTE旨在量化Treatment对不同人群的差异影响,进而通过人群定向/数值策略的方式进行差异化处理。Double..原创 2022-05-25 11:37:57 · 3500 阅读 · 0 评论 -
[因果推断] 倾向得分Propensity Score 原理(二)
PSM解决的是选择偏差问题(即控制混杂因素),倾向得分配比就是利用倾向评分值,从对照组中为处理做中的每个个体寻找一个或多个背景特征相同或相似的个体作为对照。这样就最大程度降低了其他混杂因素的干扰。文章主要介绍倾向得分匹配(PSM, Propensity Score Matching)方法的原理以及实现。这是一种理论稍微复杂、但实现较为容易的分析方法,适合非算法同学的使用。可用于(基于观察数据的)AB实验、增量模型搭建等领域。一 前置知识1.1 概念一:干预效果 Treatment Effect原创 2022-05-05 22:19:05 · 15039 阅读 · 2 评论 -
[因果推断] 增益模型(Uplift Model)介绍(三)
1 基础介绍增益模型(uplift model):估算干预增量(uplift),即干预动作(treatment)对用户响应行为(outcome)产生的效果。这是一个因果推断(Causal Inference) 课题下估算ITE(Individual Treatment Effect)的问题——估算同一个体在干预与不干预(互斥情况下)不同outcome的差异。为了克服这一反事实的现状,增益模型强依赖于随机实验(将用户随机分配到实验组&对照组)的结果数据。2 因果推断基础CATE 和原创 2022-04-29 12:32:41 · 24418 阅读 · 3 评论 -
[因果推断] 什么是因果推断(一)
什么是因果推断?为什么研究因果推断?怎么进行因果推断研究?01 什么是因果推断?关于因果关系,在《牛津哲学词典》的定义是,“当一个事件的出现导致、产生或决定了另一个事件的出现,这两个事件之间的关系就被称为因果关系。例如,外面正在下雨,不带雨具出门会被淋湿衣服。下雨和淋湿衣服之间就是因果关系, 下雨是原因,淋湿衣服是结果。因果推断是统计学和数据科学的核心问题之一,在一种现象已经发生的情况下,推出因果关系结论的过程,就是因果推断。它在生物医学、经济管理和社会科学中有都有广泛应用,可以揭示变量之间的因原创 2022-04-19 20:57:25 · 17489 阅读 · 4 评论 -
[因果推断] 学习资料汇总
causal-machine-learning/kdd2021-tutorial: EconML/CausalML KDD 2021 Tutorial (github.com)https://github.com/causal-machine-learning/kdd2021-tutorial原创 2022-04-19 20:09:52 · 1201 阅读 · 0 评论 -
[因果推断]---五个常见问题与思考
因果推断慢慢从学界走向商业环境中,有几个问题值得思考一 哪类研究需要使用因果推断(causal inference)?一般而言因果推断会和两种方法对比,一是机器学习,二是AB Test。机器学习强在预测(prediction),因果推断强在推理(reasoning)。机器学习预测的是事实(facts),比如这张图片是猫还是狗、这段留言是正面还是负面的;而因果推断推理的是反事实(counterfactual),比如一个没有拿到消费券的顾客如果拿到了消费券是否真的会去消费,或者一个没有使用过产品转载 2022-04-19 20:06:51 · 1215 阅读 · 0 评论