【快捷指令案例】iPhoneX图片加壳

前言

有时我们为了比较不同设备类型展示的效果往往会给图片添加 iPhone 手机外壳效果,手机添加无疑是很费时的,这个效果快捷指令也可以为我们实现。这次记录一下实现照片加壳的过程,末尾附快捷指令口令。

设计思路

  1. 支持多张图加壳,需要选择多张图片并进行遍历
  2. 获取图片尺寸并将尺寸调整为需要的设备尺寸
  3. 使用遮罩层和目标图片合成符合展示的设备图
  4. 使用 iPhoneX 设备壳底图与设备图进行叠图完成最终效果

设备尺寸大全

机型屏幕尺寸(英寸)分辨率(像素)缩放因子
iPhone 16 Pro Max6.71300x26003x
iPhone 16 Pro6.11200x26003x
iPhone 16 Plus6.71290x28003x
iPhone 166.11170x25323x
iPhone 15 Pro Max6.71290x28003x
iPhone 15 Pro6.11170x25323x
iPhone 15 Plus6.71290x28003x
iPhone 156.11170x25323x
iPhone 14 Pro Max6.71290x28003x
iPhone 14 Pro6.11170x25323x
iPhone 14 Plus6.71284x27783x
iPhone 146.11170x25323x
iPhone 13 Pro Max6.71284x27783x
iPhone 13 Pro6.11170x25323x
iPhone 13 Mini5.41080x23403x
iPhone 136.11170x25323x
iPhone 12 Pro Max6.71284x27783x
iPhone 12 Pro6.11170x25323x
iPhone 12 Mini5.41080x23403x
iPhone 126.11170x25323x
iPhone 11 Pro Max6.51242x26883x
iPhone 11 Pro5.81125x24363x
iPhone 116.1828x17922x
iPhone XR6.1828x17922x
iPhone XS Max6.51242x26883x
iPhone XS5.81125x24363x
iPhone X5.81125x24363x
iPhone SE34.7750x13342x
iPhone SE24.7750x13342x
iPhone SE4640x11362x
iPhone 8 Plus5.51080x19203x
iPhone 84.7750x13342x
iPhone 7 Plus5.51080x19203x
iPhone 74.7750x13342x
iPhone 6S Plus5.51080x19203x
iPhone 6S4.7750x13342x
iPhone 6 Plus5.51080x19203x
iPhone 64.7750x13342x
iPhone 5S/5C4640x11362x
iPhone 54640x11362x
iPhone 4S3.5640x9602x
iPhone 43.5640x9602x
iPhone 3Gs3.5320x4801x
iPhone 3G3.5320x4801x
iPhone 13.5320x4801x

前期准备

iPhoneX 为例,需要准备配套手机壳底图,将地图拆分为手机壳黑色底图和白色遮罩前景图(直接有一张中间镂空的手机壳框更简单)。

在这里插入图片描述

分别将 黑色底图白色地图 进行 base64加密 处理为图片字符串进行保存(这样做的目的也很简单就是为了方便连同底图一起转发给他人使用)

在这里插入图片描述

实现

1.添加配置

根据设备尺寸大全配置对应设备的尺寸,从词典中读取设备的宽高并存入变量中

在这里插入图片描述

注意下一下从词典获取值的格式

在这里插入图片描述

2.调整图片尺寸

遍历选取的图片处理图片宽高:

  • 判断当前图片是否为 iPhoneX 尺寸的图片,如果是不做处理

  • iPhoneX 尺寸图片进行尺寸调整

在这里插入图片描述

3.图片处理为设备图

将前面准备的设备前景图字符码转为图片并对选取的图片进行处理。

在这里插入图片描述

处理完成后我们将得到这样的效果图

在这里插入图片描述

4.设备图与底图叠加

解码设备底图,使用处理好的设备图与底图进行叠图处理

在这里插入图片描述

处理完成后我们将得到如下效果图

在这里插入图片描述

示例及效果预览

在这里插入图片描述

在这里插入图片描述

快捷指令口令

见原文

本文同步自微信公众号 “程序员小溪” ,这里只是同步,想看及时消息请移步我的公众号,不定时更新我的学习经验。

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值