给定一个二叉树,判断它是否是合法的二叉查找树(BST)
一棵BST定义为:
- 节点的左子树中的值要严格小于该节点的值。
- 节点的右子树中的值要严格大于该节点的值。
- 左右子树也必须是二叉查找树。
- 一个节点的树也是二叉查找树。
样例
一个例子:
2
/ \
1 4
/ \
3 5
上述这棵二叉树序列化为 {2,1,4,#,#,3,5}
.
思路:观察二叉查找树,可以发现二叉查找树的一个特点,那就是二叉查找树中序遍历可以得到一个递增的序列,只需中序遍历二叉树,判断其序列是否递增即可。中序遍历的结果就是排序二叉树的输出,可以用中序遍历判定二叉树是否为二叉查找树。
红黑树、平衡搜索二叉树(AVL树)等,其实都是搜索二叉树的不同实现。
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/*
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
bool isValidBST(TreeNode * root) {
int lastvalue=0;
//vector<int> tmp;
//if(root==NULL) return tmp;
stack<TreeNode*> s;
TreeNode* cur=root;
while(!s.empty()||cur!=NULL){
if(cur!=NULL){ //遍历左子树
s.push(cur); //把遍历的结点全部压栈
cur=cur->left;
}else{
cur=s.top();
//tmp.push_back(cur->val);
s.pop();
if(lastvalue==0||lastvalue<cur->val){
//如果是第一次弹出或lastvalue小于当前结点值
lastvalue = cur->val;
}else if(lastvalue >= cur->val){
return false;//如果lastvalue大于当前结点值,返回false
}
cur=cur->right;//指向右子节点,下次循环时会中序遍历右子树
}
}
return true;
}
};