ltp工具测试

本文记录了使用LTP 4.1.5.post2版本在Python 3.9环境下进行自然语言处理任务的测试情况,包括分句、分词、词性标注、命名实体识别、语义角色标注和依存句法分析。测试发现,LTP将小数点识别为句号,命名实体识别局限于常见实体,未处理好专有名词,且依存句法分析需先进行分句操作。
摘要由CSDN通过智能技术生成

        近期在做关于nlp的一些任务,LTP提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分句、分词、词性标注、句法分析和语义标注等工作。

        在这里主要对语言技术平台( Language Technology Plantform | LTP )在线文档在python的测试做一下记录。

版本:

ltp4.1.5.post2

python3.9

一、分句

from ltp import LTP
ltp = LTP()
input_file_dir = r'D:\毕业论文\数据处理\文本示例.txt'
lines = [line.strip() for line in open(input_file_dir, 'r', encoding='utf-8').readlines()]
for line in lines:
    print(line)
    sents = ltp.sent_split(line)
    print(sents)
    exit()

结果:

 结果没有分句,而是分成了单个字符。

错误原因:

文本输入需要以列表的形式输入。修改如下&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值