个人主页 : zxctscl
专栏 【C++】、 【C语言】、 【Linux】、 【数据结构】、 【算法】
如有转载请先通知
文章目录
前言
上一篇提到递归、搜索和回溯介绍: 【递归、搜索和回溯】递归、搜索和回溯介绍及递归类算法例题,继续来看着类型的题目
1 2331. 计算布尔二叉树的值
1.1 分析
看一下例一:把数字按题目换算成符号就是图片右边这样的情况,false&true=false,true|false=true。最后结果结果就是true。
算法原理:递归(dfs)
重复子问题:
主问题就是这棵树是true还是false,左子树是true还是false,把左子树传过去;右子树是true还是false,把右子树传过去。函数头bool dfs(root)
函数体:bool left=dfs(root->left);bool right=dfs(root->right);再把左右子树按规则计算
出口:遇到叶子节点就返回结果
1.2 代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool evaluateTree(TreeNode* root) {
if(root->left==nullptr)return root->val==0?false:true;
bool left=evaluateTree(root->left);
bool right=evaluateTree(root->right);
return root->val==2?left|right:left&right;
}
};
2 129. 求根节点到叶节点数字之和
2.1 分析
算法:递归
函数头:
传一个节点,计算与它相连的所有叶子结点的和
int dfs(root,presum)
函数体:计算节点5的值,那么第一步就得拿到到5时前面的值,也就是125,第二步,拿到它左子树值1258,第三步拿到它右子树的值12594+125931=138525,第四步,将左右两边相加1258+138525
递归出口:叶子结点
2.2 代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int sumNumbers(TreeNode* root) {
return dfs(root,0);
}
int dfs(TreeNode* root,int presum)
{
presum=presum*10+root->val;
if(root->left==nullptr&&root->right==nullptr)return presum;
int ret=0;
if(root->left)ret+=dfs(root->left,presum);
if(root->right)ret+=dfs(root->right,presum);
return ret;
}
};
3 814. 二叉树剪枝
3.1 分析
里面所有包含0的子树全部剪掉
算法原理:递归
通过决策树,抽象出递归的三个核心问题
遇到0的时候,要先判断它的左子树和右子树是否是0,就要用到后序遍历。
当后序遍历节点的左子树遇到0后用null返回,如果左子树没有改变,就直接返回它的值。
函数头 Node* dfs(root)
函数体
(1)处理左子树
(2)处理右子树
(3)判断
递归出口
当root为空就返回
3.2 代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* pruneTree(TreeNode* root) {
if(root==nullptr)return nullptr;
root->left=pruneTree(root->left);
root->right=pruneTree(root->right);
if(root->left==nullptr&&root->right==nullptr&&root->val==0)
{
root=nullptr;
}
return root;
}
};
4 98. 验证二叉搜索树
4.1 分析
二叉搜索树的中序遍历的结果,是一个有序的序列用这个性质来做这道题。
用一个全局变量prev,让这个全局变量先初始化为负无穷大,当在进行中序遍历的时候,到一个节点的时候,prev记录它的前面遍历节点的值,拿prev和当前节点的值比较后,更新prev的值,继续遍历,是有序的就继续遍历,更新。
算法:递归
策略一:
左子树是二叉搜索树
当前节点符合二叉搜索树
右节点是二叉搜索树
策略二:剪枝
当全局变量prev,遍历到19的时候就已经不是二叉搜索树了,就不需要再往下遍历了。
4.2 代码
策略一:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
long prev=LONG_MIN;
public:
bool isValidBST(TreeNode* root)
{
if(root==nullptr)return true;
bool left=isValidBST(root->left);
bool cur=false;
if(root->val>prev)
{
cur=true;
}
prev=root->val;
bool right=isValidBST(root->right);
return left&&right&&cur;
}
};
策略二:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
long prev=LONG_MIN;
public:
bool isValidBST(TreeNode* root)
{
if(root==nullptr)return true;
bool left=isValidBST(root->left);
if(left==false)return false;
bool cur=false;
if(root->val>prev)
{
cur=true;
}
prev=root->val;
bool right=isValidBST(root->right);
return left&&right&&cur;
}
};
5 230. 二叉搜索树中第 K 小的元素
5.1 分析
二叉搜索树的中序遍历的结果,是一个有序的序列用这个性质来做这道题。
与上面那题类似。
这题用两个全局变量和中序遍历。
一个全局变量c用来计数,另一个ret用来记录遍历节点对应的值。
每遍历一次c就减减,当c等于0时候的ret值就是最终需要的值。
当找到最终结果时候,此时c=0后面就不用遍历了。
5.2 代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
int count;
int ret;
public:
int kthSmallest(TreeNode* root, int k) {
count=k;
dfs(root);
return ret;
}
void dfs(TreeNode* root)
{
if(root==nullptr||count==0)return;
dfs(root->left);
count--;
if(count==0)ret=root->val;
dfs(root->right);
}
};
6 257. 二叉树的所有路径
6.1 分析
全局变量
回溯->恢复现场
一道题出现了回溯才能想到恢复现场。
题目要求以箭头形式返回结果
算法原理:
根节点开始向下搜索,遇到一个叶子结点,存一下这个路径,存到数组中返回。
用两个全局变量,一个string[] ret表示字符串数组保存最终结果,遇到一个叶子结点路径就放进去。另一个string path用来记录路径,遇到不是叶子结点就在后面加上这个值,遇到叶子结点后,把这个path加到ret里面。
但要考虑path的回溯问题:
为了防止回溯多加上叶子结点的值,就得恢复现场,再回溯时候就得剪掉上一个路径的叶子结点。
全局变量恢复现场不容易,就不用全局的string path。
如果把path设置成函数头参数,就不用恢复现场,函数的特性就会帮助恢复现场。
函数头:
void dfs(root,path)
当遍历时候,就会重新创建一个path,而上面的path也在:
函数体
当遇到叶子结点时:就把path加到ret里面
不是叶子结点就继续遍历
递归出口:
当左子树为空的时候,就不需要遍历它左子树,把它左子树就剪掉。
不想剪枝,就直接root为空返回
6.2 代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<string> ret;
vector<string> binaryTreePaths(TreeNode* root)
{
string path;
if(root==nullptr)return ret;
dfs(root,path);
return ret;
}
void dfs(TreeNode* root,string path)
{
path+=to_string(root->val);
if(root->left==nullptr&&root->right==nullptr)
{
ret.push_back(path);
return;
}
path+="->";
if(root->left)dfs(root->left,path);
if(root->right)dfs(root->right,path);
}
};
有问题请指出,大家一起进步!!!