【递归、搜索和回溯】二叉树中的深搜

个人主页zxctscl
专栏 【C++】【C语言】【Linux】【数据结构】【算法】
如有转载请先通知

前言

上一篇提到递归、搜索和回溯介绍: 【递归、搜索和回溯】递归、搜索和回溯介绍及递归类算法例题,继续来看着类型的题目

1 2331. 计算布尔二叉树的值

在这里插入图片描述

1.1 分析

看一下例一:把数字按题目换算成符号就是图片右边这样的情况,false&true=false,true|false=true。最后结果结果就是true。
在这里插入图片描述
算法原理:递归(dfs)
重复子问题:
主问题就是这棵树是true还是false,左子树是true还是false,把左子树传过去;右子树是true还是false,把右子树传过去。函数头bool dfs(root)

函数体:bool left=dfs(root->left);bool right=dfs(root->right);再把左右子树按规则计算

出口:遇到叶子节点就返回结果

1.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool evaluateTree(TreeNode* root) {
        if(root->left==nullptr)return root->val==0?false:true;
        bool left=evaluateTree(root->left);
        bool right=evaluateTree(root->right);
        return root->val==2?left|right:left&right;
        
    }
};

2 129. 求根节点到叶节点数字之和

在这里插入图片描述

2.1 分析

算法:递归
函数头:
传一个节点,计算与它相连的所有叶子结点的和
int dfs(root,presum)

函数体:计算节点5的值,那么第一步就得拿到到5时前面的值,也就是125,第二步,拿到它左子树值1258,第三步拿到它右子树的值12594+125931=138525,第四步,将左右两边相加1258+138525
在这里插入图片描述

递归出口:叶子结点

2.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int sumNumbers(TreeNode* root) {
        return dfs(root,0);
    }
    int dfs(TreeNode* root,int presum)
    {
        presum=presum*10+root->val;
        if(root->left==nullptr&&root->right==nullptr)return presum;
        int ret=0;
        if(root->left)ret+=dfs(root->left,presum);
        if(root->right)ret+=dfs(root->right,presum);
        return ret;
    }
};

3 814. 二叉树剪枝

在这里插入图片描述

3.1 分析

里面所有包含0的子树全部剪掉
在这里插入图片描述
算法原理:递归
通过决策树,抽象出递归的三个核心问题

遇到0的时候,要先判断它的左子树和右子树是否是0,就要用到后序遍历。
当后序遍历节点的左子树遇到0后用null返回,如果左子树没有改变,就直接返回它的值。
在这里插入图片描述
函数头 Node* dfs(root)

函数体
(1)处理左子树
(2)处理右子树
(3)判断

递归出口
当root为空就返回

3.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* pruneTree(TreeNode* root) {
        if(root==nullptr)return nullptr;
        root->left=pruneTree(root->left);
        root->right=pruneTree(root->right);
        if(root->left==nullptr&&root->right==nullptr&&root->val==0)
        {
            root=nullptr;
        }
        return root;
    }
};

4 98. 验证二叉搜索树

在这里插入图片描述

4.1 分析

二叉搜索树的中序遍历的结果,是一个有序的序列用这个性质来做这道题。

用一个全局变量prev,让这个全局变量先初始化为负无穷大,当在进行中序遍历的时候,到一个节点的时候,prev记录它的前面遍历节点的值,拿prev和当前节点的值比较后,更新prev的值,继续遍历,是有序的就继续遍历,更新。
在这里插入图片描述

算法:递归
策略一:
左子树是二叉搜索树
当前节点符合二叉搜索树
右节点是二叉搜索树

策略二:剪枝
当全局变量prev,遍历到19的时候就已经不是二叉搜索树了,就不需要再往下遍历了。
在这里插入图片描述

4.2 代码

策略一:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution 
{
    long prev=LONG_MIN;
public:
    bool isValidBST(TreeNode* root) 
    {
        if(root==nullptr)return true;

        bool left=isValidBST(root->left);
        bool cur=false;
        if(root->val>prev)
        {
            cur=true;      
        }
        prev=root->val;

        bool right=isValidBST(root->right);
        return left&&right&&cur;
        
    }
  
};

策略二:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution 
{
    long prev=LONG_MIN;
public:
    bool isValidBST(TreeNode* root) 
    {
        if(root==nullptr)return true;

        bool left=isValidBST(root->left);
        if(left==false)return false;

        bool cur=false;
        if(root->val>prev)
        {
            cur=true;      
        }
        prev=root->val;

        bool right=isValidBST(root->right);
        return left&&right&&cur;
        
    }
  
};

5 230. 二叉搜索树中第 K 小的元素

在这里插入图片描述

5.1 分析

二叉搜索树的中序遍历的结果,是一个有序的序列用这个性质来做这道题。
与上面那题类似。
这题用两个全局变量和中序遍历。

一个全局变量c用来计数,另一个ret用来记录遍历节点对应的值。
每遍历一次c就减减,当c等于0时候的ret值就是最终需要的值。
当找到最终结果时候,此时c=0后面就不用遍历了。
在这里插入图片描述

5.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    int count;
    int ret;
public:
    int kthSmallest(TreeNode* root, int k) {
        count=k;
       dfs(root);
       return ret;       
    }

     void dfs(TreeNode* root)
     {
         if(root==nullptr||count==0)return;
         dfs(root->left);
         count--;
         if(count==0)ret=root->val;
         dfs(root->right);
     }
};

6 257. 二叉树的所有路径

在这里插入图片描述

6.1 分析

全局变量

回溯->恢复现场
一道题出现了回溯才能想到恢复现场。

题目要求以箭头形式返回结果

算法原理:
根节点开始向下搜索,遇到一个叶子结点,存一下这个路径,存到数组中返回。

用两个全局变量,一个string[] ret表示字符串数组保存最终结果,遇到一个叶子结点路径就放进去。另一个string path用来记录路径,遇到不是叶子结点就在后面加上这个值,遇到叶子结点后,把这个path加到ret里面。

但要考虑path的回溯问题:
为了防止回溯多加上叶子结点的值,就得恢复现场,再回溯时候就得剪掉上一个路径的叶子结点。
全局变量恢复现场不容易,就不用全局的string path。
在这里插入图片描述
如果把path设置成函数头参数,就不用恢复现场,函数的特性就会帮助恢复现场。

函数头:
void dfs(root,path)
当遍历时候,就会重新创建一个path,而上面的path也在:
在这里插入图片描述
函数体
当遇到叶子结点时:就把path加到ret里面
不是叶子结点就继续遍历

递归出口:
当左子树为空的时候,就不需要遍历它左子树,把它左子树就剪掉。
在这里插入图片描述
不想剪枝,就直接root为空返回

6.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<string> ret;
    vector<string> binaryTreePaths(TreeNode* root) 
    {
        string path;
        if(root==nullptr)return ret;
        dfs(root,path);
        return ret;
    }
    void dfs(TreeNode* root,string path)
    {
        path+=to_string(root->val);
        if(root->left==nullptr&&root->right==nullptr)
        {
            ret.push_back(path);
            return;
        }
        path+="->";

        if(root->left)dfs(root->left,path);
        if(root->right)dfs(root->right,path);


    }
};

有问题请指出,大家一起进步!!!

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zxctscl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值