描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
格式
输入格式
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
样例1
样例输入1
3 1 2 9
样例输出1
15
题解:之前我是直接将果子排序后一次将前2,3,4,5,6,。。。n的和在求和,提交错了,没有想出,看了大神的代码,题目类似于哈夫曼树。
之前自己总是举3个数的数据一直以为是对的。
wrong code:
#include <iostream> #include <algorithm> using namespace std; int main() { int a[10001],n,i,sum,k; while(cin>>n) { sum=0;k=0; for(i=0;i<n;i++) cin>>a[i]; sort(a,a+n); k=a[0]; for(i=1;i<n;i++) { k+=a[i]; sum+=k; } cout<<sum<<endl; } return 0; }
AC code:
#include <iostream> #include <queue> using namespace std; int main() { int t,n,i,k,sum; priority_queue<int,vector<int>,greater<int> > p; while(cin>>n) { for(i=0;i<n;i++) { cin>>t; p.push(t); } sum=0; while(!p.empty()) { t=p.top(); p.pop(); if(p.empty()) break; else { k=p.top(); p.pop(); k+=t; sum+=k; p.push(k); } } cout<<sum<<endl; } return 0; }