给定有n个连乘矩阵的维数,要求计算其采用最优计算次序时所用的乘法次数,即所要求计算的乘法次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采用(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,而采用A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
输入输入数据有T组测试数据。测试数据的数目 (T)在输入的第一行给出。每组测试数据的第一行为矩阵个数K,接下来K行,每行两个整数M和N(1<=M,N<=100),表示一个矩阵的维数,维数之间用一空格隔开。输入矩阵的顺序采用连乘的顺序,即可以假定输入符合矩阵连乘。
输出
每个用例,用一行输出采用最优次序得到的最少乘法次数。
样例输入
2
3
10 100
100 5
5 50
1
10 20
样例输出
7500
0
题解:
将每条对角线上的值初始化为0.
依次求出斜线上的值。
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,d[1000],s[1000][1000];
int work()
{
int i,j,k,l;
for(i=0; i<n; i++)
s[i][i] = 0;
for(l=2; l<=n; l++)
{
for(i=1; i<=n-l+1; i++)
{
j = i+l-1;
s[i][j] = s[i][i]+s[i+1][j]+d[i-1]*d[i]*d[j];
for(k=i+1; k<j; k++)
{
int temp = s[i][k] + s[k+1][j] +d[i-1]*d[k]*d[j];
if(temp<s[i][j])
s[i][j] = temp;
}
}
}
return s[1][n];
}
int main()
{
int t,i,j,a,b;
cin>>t;
while(t--)
{
j=0;
cin>>n;
for(i=0; i<n-1; i++)
{
cin>>a>>b;
d[j++] = a;
}
cin>>a>>b;
d[j++] = a;
d[j++] = b;
cout<<work()<<endl;
}
return 0;
}