《PCANet: A Simple Deep Learning Baseline for Image Classification》精读笔记

PCANet是一种简化的深度学习模型,旨在解决经典CNN训练时间长和调参复杂的问题。它通过PCA和二值化实现图像特征提取,提供了一个深度学习研究的基础。论文详细介绍了模型的训练方法,包括两个阶段的卷积和二值化处理,最后生成用于分类的特征图像。
摘要由CSDN通过智能技术生成

[

本文参考博客:

http://blog.csdn.net/orangehdc/article/details/37763933http://my.oschina.net/Ldpe2G/blog/275922http://blog.csdn.net/sheng_ai/article/details/39971599

]

参考文献:[1] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma, PCANet: A Simple Deep Learning Baseline for Image Classification? 2014  

论文链接:http://arxiv.org/abs/1404.3606

matlab代码:Matlab Codes for Download

C++代码:https://github.com/Ldpe2G/PCANet

整理时间:2014.10.26

一、全文主旨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值