基于数据分析的评分系统改进

博客探讨了如何在问卷调查设计中确保问题独立,并在数据分析与经理主观判断间找到平衡。针对中小量非实时数据分析,推荐使用Excel、Python或R。通过相关性分析,展示Average.of.Q1到Average.of.Q5之间的关联,讨论如何进行不失公允的专家调整以改进评分系统。
摘要由CSDN通过智能技术生成
现代互联网组织愈发依赖数据,收集反馈,以正确有效的决策。
本文以软件工程师的绩效考核为例,展现了如何通过数据分析,调整和改进量化的评分系统。


业务问题:
基于360度绩效考核方法,现代组织会设计问卷调查表,请被考核员工的同事客户针对多个问题进行打分,以得到该员工量化的绩效结果。
在实践中,这套方法遇到两个问题:
  1. 问卷调查问题的设计是否合理: 理想中,每个问题都应该相互独立,也就是问题1的结果不会对问题2造成影响。问卷表很难在第一个版本中就设计完备,设计问题本身也是一个基于反馈分析的迭代过程。
  2. 有时候,调查结果与经理的主观判断有差异。有经验的经理作为专家,其主观判断应该作为评价结果的重要输入。 那如何调整才能考虑经理判断的同时,又不失评分系统的公允呢?


工具选择:
我们有了某组织某年度所有员工的绩效评分数据,那选择什么数据分析工具呢?
  1. 这类业务问题的数据量通常不大,而且对分析结果的实时性要求也不强,所以没有必要使用Hadoop,Spark等平台;
  2. 中小量的非实时数据分析,工具有很多选择: Excel用的最多,初步的数据清理和呈现,Excel是很方便的。复杂些的分析,可以选择Python或R,Python作为通用语言,各平台对它的支持很好,像新浪的PaaS SAE可以直接支持Python;而R的库很全,基本可以覆盖所有的统计需求。
这个例子中,我们使用R。


分析过程和结论:
经过数据清洗,我们有了某组织某年度所有员工的绩效评分数据如下:
第一列是工程师名字,Average of Q1 到 Q5是该工程师在5个问题上得分的平均值,最后一列是该工程师最后的总分。
Engineer Average of Q1 Average of Q2 Average of Q3 Average of Q4 Average of Q5 Average of SUM
Michael 66 72 68 70 66
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值