现代互联网组织愈发依赖数据,收集反馈,以正确有效的决策。
本文以软件工程师的绩效考核为例,展现了如何通过数据分析,调整和改进量化的评分系统。
业务问题:
基于360度绩效考核方法,现代组织会设计问卷调查表,请被考核员工的同事客户针对多个问题进行打分,以得到该员工量化的绩效结果。
在实践中,这套方法遇到两个问题:
- 问卷调查问题的设计是否合理: 理想中,每个问题都应该相互独立,也就是问题1的结果不会对问题2造成影响。问卷表很难在第一个版本中就设计完备,设计问题本身也是一个基于反馈分析的迭代过程。
- 有时候,调查结果与经理的主观判断有差异。有经验的经理作为专家,其主观判断应该作为评价结果的重要输入。 那如何调整才能考虑经理判断的同时,又不失评分系统的公允呢?
工具选择:
我们有了某组织某年度所有员工的绩效评分数据,那选择什么数据分析工具呢?
- 这类业务问题的数据量通常不大,而且对分析结果的实时性要求也不强,所以没有必要使用Hadoop,Spark等平台;
- 中小量的非实时数据分析,工具有很多选择: Excel用的最多,初步的数据清理和呈现,Excel是很方便的。复杂些的分析,可以选择Python或R,Python作为通用语言,各平台对它的支持很好,像新浪的PaaS SAE可以直接支持Python;而R的库很全,基本可以覆盖所有的统计需求。
这个例子中,我们使用R。
分析过程和结论:
经过数据清洗,我们有了某组织某年度所有员工的绩效评分数据如下:
第一列是工程师名字,Average of Q1 到 Q5是该工程师在5个问题上得分的平均值,最后一列是该工程师最后的总分。
Engineer | Average of Q1 | Average of Q2 | Average of Q3 | Average of Q4 | Average of Q5 | Average of SUM |
Michael | 66 | 72 | 68 | 70 | 66 |