知识:数组是最简单的一种数据结构,占据一块连续的内存并按顺序存储数据。创建数组时,需要首先指定数组的大小,然后根据大小分配内存。数组的空间效率不高,会有空闲区域没有充分利用。由于数组内存连续,可以根据下标在O(1)时间访问任意元素。可以用数组实现简单的哈希表:数组下标设为哈希表键值(Key),数组中每一个数字设为哈希表值(Value),形成“键-值”配对。
题目1:在一个长度为n的数组里的所有数字都在0~n-1的范围内。数组中某些数字是重复的,不知道有几个数字重复了和重复的次数。请找出数组种任意一个重复的数字。例如,输入长度为7的数组{2,3,1,0,2,5,3},对应输出是2或3.
思路:1,用集合求解
2.数组中的数字都在0-n-1之间。如果这个数组中没有重复的数字,那么当数组排序后,数字i将出现在数组中下标为i的位置。由于数组中有重复的数子,有些位置可能存在多个位置,有些位置可能没有数字。因此可以考虑重新排列这个数组。从头到尾扫描数组,当扫描到下标为i的数字时,首先比较这个数字m是不是等于i.如果是,则继续扫描下一个数字;如果不是,则拿它和第m个数字进行比较。如果它和第m个数字相等,就找到一个重复的数字。如果不相等,则交换第i个数和第m个数,把m放到属于它的位置。接着重复比较,直到发现重复的数字。
/**
* @author zhouhui
* @version 1.0
*
* 题目:在一个长度为n的数组里的所有数字都在0~n-1的范围内。数组中某些数字是重复的,
* 不知道有几个数字重复了和重复的次数。请找出数组种任意一个重复的数字。
* 例如,输入长度为7的数组{2,3,1,0,2,5,3},对应输出是2或3.
*
* 思路:
* 数组中的数字都在0-n-1之间。如果这个数组中没有重复的数字,那么当数组排序后,
* 数字i将出现在数组中下标为i的位置。由于数组中有重复的数子,有些位置可能存在多个位置,
* 有些位置可能没有数字。因此可以考虑重新排列这个数组。从头到尾扫描数组,
* 当扫描到下标为i的数字时,首先比较这个数字m是不是等于i.如果是,
* 则继续扫描下一个数字;如果不是,则拿它和第m个数字进行比较。
* 如果它和第m个数字相等,就找到一个重复的数字。
* 如果不相等,则交换第i个数和第m个数,把m放到属于它的位置。
* 接着重复比较,直到发现重复的数字。
*/
public class Test3_FindNumArr1 {
public static void main(String[] args) {
int[] arr = {2, 3, 1, 0, 2, 5, 3};
//没有重复数字
//int[] arr = {2, 3, 1, 0, 4, 5, 6};
//数组含有超过长度的数字
//int[] arr = {2, 3, 1, 8, 2, 5, 3};
//空数组测试
//int[] arr = {};
int num1 = findNum(arr);
if(num1 == -1) {
System.out.println("数组没有重复数字,或输入有误");
} else {
System.out.println(num1);
}
//数组交换测试
// swap(arr,0,arr[0]);
// for(int i: arr) {
// System.out.print(i);
// }
}
// 寻找数组重复数字
public static int findNum(int[] arr){
boolean flag = false; //设置标志位,标识是否找到重复数字
int num = 0; //重复数字
// 数组合理性判断
if(arr.length < 0 || arr == null) {
return -1;
}
for(int i = 0; i < arr.length; i++) {
if(arr[i] < 0 || arr[i] > arr.length - 1) {
return -1;
}
}
// 寻找重复数字
for(int i = 0; i < arr.length; i++) {
while (arr[i] != i){
if(arr[i] == arr[arr[i]]) {
num = arr[i];
// flag = true;
return num;
} else {
swap(arr,i,arr[i]);
}
}
}
return -1;
//
/* 思路分析
//根据思路,以{2,3,1,0,2,5,3}为例
//第一趟,比较2是否等于位置0,否,比较比较2和arr[2]是否相等,不相等,交换arr[0]和arr[2]
if (arr[0] == 0) {
//跳到下一个数字
}
if(arr[0] == arr[arr[0]]){
//说明找到一个重复的数字
} else {
// 把arr[0] 放到它应该放的位置,交换arr[0] 和 arr[arr[0]]
swap(arr,0,arr[0]);
}
//第一趟结束后,{1,3,2,0,2,5,3}
//第二趟,仍旧从位置0开始,结束后{3,1,2,0,2,5,3}
*/
}
// 根据下标交换数组
public static void swap(int[] nums, int m, int n) {
int temp = nums[n];
nums[n] = nums[m];
nums[m] = temp;
}
}
**题目二:**不修改数组找出重复的数字
在一个长度为n+1的数组里的所有数字都在1-n的范围内,所有数组中至少有一个数字是重复的。请找出数组中任意一个重复的数字,但不能修改输入的数组。例如,长度为8的数组{2,3,5,4,3,2,6,7},输出2或3
思路1:类似题目一的思路,借助一个辅助数组,需要O(n)的辅助空间。
思路2:由于数组长度为n+1,但包含的数字范围只有1-n,所以一定会有重复的数字。考虑从某范围内数字的个数出发来解决问题。把1-n的数字从中间m分为两部分,前面一半为1-m,后面一半为m+1n,如果1m的数字个数超过m,那么这一半的区间一定包含重复的数字。否则,另一半m+1~n范围内一定包含重复的数字。然后,继续把包含重复数字的区间一分为二,直到找到一个重复的数字。类似二分查找,但是多了一个统计数字个数的过程。时间复杂度O(nlogn),空间复杂度O(1),此算法不能找出所有重复的数字。
/**
* @author zjay
* @version 1.0
* 题目二:不修改数组找出重复的数字
* 在一个长度为n+1的数组里的所有数字都在1-n的范围内,所有数组中至少有一个数字是重复的。
* 请找出数组中任意一个重复的数字,但不能修改输入的数组。
* 例如,长度为8的数组{2,3,5,4,3,2,6,7},输出2或3
* 思路2:由于数组长度为n+1,但包含的数字范围只有1-n,所以一定会有重复的数字。
* 考虑从某范围内数字的个数出发来解决问题。把1-n的数字从中间m分为两部分,
* 前面一半为1-m,后面一半为m+1~n,如果1~m的数字个数超过m,那么这一半的区间一定包含重复的数字。
* 否则,另一半m+1~n范围内一定包含重复的数字。然后,继续把包含重复数字的区间一分为二,
* 直到找到一个重复的数字。类似二分查找,但是多了一个统计数字个数的过程。
* 时间复杂度O(nlogn),空间复杂度O(1),此算法不能找出所有重复的数字。
*/
public class Test3_FindNumArr2 {
public static void main(String[] args) {
// int[] arr = {2,2,5,4,3,2,6,7}; 无法统计
int[] arr = {2,3,5,4,5,3,6,7};
int num = findNum2(arr);
System.out.println(num);
}
public static int findNum2 (int[] arr){
int end = arr.length - 1; // 数组长度
int start = 1; //初始左端点
int count = 0; //数字出现个数统计
while (start <= end) {
int mid = (end - start) / 2 + start;
count = countNum(arr,start,mid);
// 结束条件判断,经过Debug,start后面会和mid相等,此时就是在start,start之间统计
if(start == end) {
if(count > 1) { //当遍历结束的时候,最后一个数字出现的次数大于1,就是重复的数字
return start;
} else { //否则结束循环
break;
}
}
if(start == mid) {
if (count > 1) {
return start;
}
}
//if(count > mid) { //只考虑了前面部分,没考虑在后半段出现
if(count > (mid - start + 1)) {
end = mid;
} else {
start = mid + 1;
}
}
//思路分析: 二分查找(针对数字而不是数组) + 统计数字个数
// 第一趟,将数组一分为二 {2,3,5,4,3,2,6,7}
// 数组长度 8,范围 1-7
//int mid = (start + end) / 2; //4
// count = countNum(arr,start,mid);
/* 思路分析
if(count > mid) {
// 继续
end = mid;
mid = (start + end) / 2;
System.out.println("第二次mid:"+mid); //2
count = countNum(arr,start,mid);
System.out.println("第二次count:"+count); //2,此时在1-2范围内,数字个数为2,但是2出现两次,无法统计
if(count > mid) {
//继续
} else {
start = mid;
mid = (start + end) / 2;
System.out.println("第3次mid:"+mid); //2
count = countNum(arr,start,mid);
System.out.println("第3次count:"+count);
}
} else {
}
*/
return -1;
}
public static int countNum(int[] arr, int start, int mid) {
//空数组判断
if(arr.length == 0) {
return 0;
}
int count = 0; //统计 arr数组中数字在start-mid 这个范围内的个数
for(int i: arr) {
if(i <= mid && i >= start) {
count++;
}
}
return count;
}
}