【LeetCode】516. Longest Palindromic Subsequence

https://leetcode.com/problems/longest-palindromic-subsequence/description/

Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:
“bbbab”
Output:
4
One possible longest palindromic subsequence is “bbbb”.

Example 2:
Input:
“cbbd”
Output:
2
One possible longest palindromic subsequence is “bb”.

解题思路:
dp[i][j] 表示字符串从 i~j 位置最长的回文字符串的长度
状态转移方程:

dp[i][j] = dp[i+1][j-1]+2                if(char[i]==char[j])
           max(dp[i+1][j],dp[i][j-1])

边界: dp[i][i]==1


public class Longest_Palindromic_Subsequence_516 {

    /**
     * dp[i][j] 表示字符串从i~j的最长的回文子序列的长度\
     * 边界
     * dp[i][i] = 1  (0<i<s.length-1)
     * 
     * 状态转移方程
     * dp[i][j] = dp[i+1][j-1] + 2              if(s.charAt(i)==s.charAt(j))
     *            max(dp[i+1][j],dp[i][j-1])    if(s.charAt(i)!=s.charAt(j))
     * 
     * @param s
     * @return
     */
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len][len];
        for(int i=len-1;i>=0;i--){
            dp[i][i] = 1;
            for(int j=i+1;j<=len-1;j++){
                if(s.charAt(i)==s.charAt(j)){
                    dp[i][j] = dp[i+1][j-1] + 2;
                }else{
                    dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }
        return dp[0][len-1];
    }

    public static void main(String[] args) {
        System.out.println(new Longest_Palindromic_Subsequence_516().longestPalindromeSubseq("bbbab"));
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值