https://leetcode.com/problems/longest-palindromic-subsequence/description/
Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
“bbbab”
Output:
4
One possible longest palindromic subsequence is “bbbb”.Example 2:
Input:
“cbbd”
Output:
2
One possible longest palindromic subsequence is “bb”.
解题思路:
dp[i][j] 表示字符串从 i~j 位置最长的回文字符串的长度
状态转移方程:
dp[i][j] = dp[i+1][j-1]+2 if(char[i]==char[j])
max(dp[i+1][j],dp[i][j-1])
边界: dp[i][i]==1
public class Longest_Palindromic_Subsequence_516 {
/**
* dp[i][j] 表示字符串从i~j的最长的回文子序列的长度\
* 边界
* dp[i][i] = 1 (0<i<s.length-1)
*
* 状态转移方程
* dp[i][j] = dp[i+1][j-1] + 2 if(s.charAt(i)==s.charAt(j))
* max(dp[i+1][j],dp[i][j-1]) if(s.charAt(i)!=s.charAt(j))
*
* @param s
* @return
*/
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len][len];
for(int i=len-1;i>=0;i--){
dp[i][i] = 1;
for(int j=i+1;j<=len-1;j++){
if(s.charAt(i)==s.charAt(j)){
dp[i][j] = dp[i+1][j-1] + 2;
}else{
dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][len-1];
}
public static void main(String[] args) {
System.out.println(new Longest_Palindromic_Subsequence_516().longestPalindromeSubseq("bbbab"));
}
}