https://leetcode.com/problems/predict-the-winner/description/
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Note:
1 <= length of the array <= 20.
Any scores in the given array are non-negative integers and will not exceed 10,000,000.
If the scores of both players are equal, then player 1 is still the winner.
解题思路:
通过使用dp[i][j]分别记录两个玩家player1和player2从i~j获取的最大值
player1得到的最大值为正,player2得到的最大值为负,判断dp[0][n-1]最后的正负
状态转移方程
当player1为 dp[i][j],则player2为 dp[i+1][j] 或者为 dp[i][j-1]
取当前能够的添加点-之前dp值的最大值为当前最优
dp[i][j] = max(num[i]-dp[i+1][j],num[j]-dp[i][j-1])
public class Predict_the_Winner_486 {
/**
* 通过使用dp[i][j]分别记录两个玩家player1和player2从i~j获取的最大值
* player1得到的最大值为正,player2得到的最大值为负,判断dp[0][n-1]最后的正负
* 当player1为dp[i][j],则player2为dp[i+1][j]或者为dp[i][j-1]
* 取当前能够的添加点-之前dp值的最大值为当前最优
* dp[i][j] = max(num[i]-dp[i+1][j],num[j]-dp[i][j-1])
* @param nums
* @return
*/
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for(int i=0;i<n;i++){
dp[i][i] = nums[i];
}
for(int len = 1;len<n;len++){
for(int i=0,j=len;j<n;i++,j++){
dp[i][j] = Math.max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1]);
}
}
return dp[0][n-1]>=0;
}
public static void main(String[] args) {
int[] input = {1, 5, 233, 7};
System.out.println(new Predict_the_Winner_486().PredictTheWinner(input));
}
}